15.在一個(gè)壇子中裝有16個(gè)除顏色外完全相同的玻璃球,其中有2個(gè)紅的,3個(gè)藍(lán)的,5個(gè)綠的,6個(gè)黃的,從中任取一球,放回后,再取一球.求第一次取出紅球且第二次取出黃球的概率.

分析 利用相互獨(dú)立事件概率乘法公式求解.

解答 解:∵在一個(gè)壇子中裝有16個(gè)除顏色外完全相同的玻璃球,
其中有2個(gè)紅的,3個(gè)藍(lán)的,5個(gè)綠的,6個(gè)黃的,
從中任取一球,放回后,再取一球.
∴第一次取出紅球且第二次取出黃球的概率:
p=$\frac{2}{16}×\frac{6}{16}$=$\frac{3}{64}$.

點(diǎn)評(píng) 本題考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意相互獨(dú)立事件概率乘法公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.圓柱的底面不變,體積擴(kuò)大到原來的n倍,則高擴(kuò)大到原來的n倍;反之,高不變,底面半徑應(yīng)擴(kuò)大到原來的$\sqrt{n}$倍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.2015年1月1日新《環(huán)境保護(hù)法》實(shí)施后,2015年3月18日,交通運(yùn)輸部發(fā)布《關(guān)于加快推進(jìn)新能源汽車在交通運(yùn)輸行業(yè)推廣應(yīng)用的實(shí)施意見》,意見指出,至2020年,新能源汽車在交通運(yùn)輸行業(yè)的應(yīng)用初具規(guī)模,在城市公交、出租汽車和城市物流配送等領(lǐng)域的總量達(dá)到30萬(wàn)輛;新能源汽車配套服務(wù)設(shè)施基本完備,新能源汽車運(yùn)營(yíng)效率和安全水平明顯提升.隨著新能源汽車的迅速發(fā)展,關(guān)于新能源汽車是純電動(dòng)汽車的續(xù)航里程(單次充電后能行駛的最大里程)一直是消費(fèi)者最為關(guān)注的話題.
對(duì)于這一問題渭南市某高中研究性學(xué)習(xí)小組從汽車市場(chǎng)上隨機(jī)抽取n輛純電動(dòng)汽車調(diào)查其續(xù)航里程,被調(diào)查汽車的續(xù)航里程全部介于50公里和300公里之間,將統(tǒng)計(jì)結(jié)果分成5組:[50,100),[100,150),[150,200),[200,250),[250,300],繪制如圖所示的頻率分布直方圖.
(1)若續(xù)航里程在[100,150)的車輛數(shù)為5,求抽取的樣本容量n及頻率分布直方圖中x的值;
(2)在(1)的條件下,若從續(xù)航里程在[200,300]的車輛中隨機(jī)抽取2輛車,求其中恰有一輛車的續(xù)航里程為[250,300]的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)a是正數(shù),則同時(shí)滿足下列條件:$\frac{a}{2}$≤x≤2a;$\frac{a}{2}$≤y≤2a;x+y≥a;x+a≥y;y+a≥x的不等式組表示的平面區(qū)域是一個(gè)凸六邊形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在平行四邊形中,AC與BD交于點(diǎn)O,$\overrightarrow{DE}$=$\frac{1}{2}$$\overrightarrow{DO}$,CE的延長(zhǎng)線與AD交于點(diǎn)F,若$\overrightarrow{CF}$=$λ\overrightarrow{AC}$+$μ\overrightarrow{BD}$(λ,μ∈R),則λ+μ=-$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知集合A={x|x2-x-2≤0},B={x|2a<x<a+3},且滿足A∩B=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.求以C(1,1)為圓心,且過圓x2+y2-6x+2y-1=0的圓心的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.長(zhǎng)半軸長(zhǎng)為6,離心率為$\frac{1}{3}$,且焦距在x軸上的橢圓的標(biāo)準(zhǔn)方程是$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{8}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某地政府為提升城市形象,在該地區(qū)邊長(zhǎng)為1的正方形ABCD的空地建文化廣場(chǎng),在正方形ABCD的內(nèi)部規(guī)劃一塊△CPQ區(qū)域種植花草,并滿足P,Q分別為邊AB,DA上的動(dòng)點(diǎn),且∠PCQ=$\frac{π}{3}$,問∠PCB多大時(shí)才能使△CPQ面積的最小,并求出最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案