6.2015年1月1日新《環(huán)境保護(hù)法》實(shí)施后,2015年3月18日,交通運(yùn)輸部發(fā)布《關(guān)于加快推進(jìn)新能源汽車在交通運(yùn)輸行業(yè)推廣應(yīng)用的實(shí)施意見》,意見指出,至2020年,新能源汽車在交通運(yùn)輸行業(yè)的應(yīng)用初具規(guī)模,在城市公交、出租汽車和城市物流配送等領(lǐng)域的總量達(dá)到30萬(wàn)輛;新能源汽車配套服務(wù)設(shè)施基本完備,新能源汽車運(yùn)營(yíng)效率和安全水平明顯提升.隨著新能源汽車的迅速發(fā)展,關(guān)于新能源汽車是純電動(dòng)汽車的續(xù)航里程(單次充電后能行駛的最大里程)一直是消費(fèi)者最為關(guān)注的話題.
對(duì)于這一問(wèn)題渭南市某高中研究性學(xué)習(xí)小組從汽車市場(chǎng)上隨機(jī)抽取n輛純電動(dòng)汽車調(diào)查其續(xù)航里程,被調(diào)查汽車的續(xù)航里程全部介于50公里和300公里之間,將統(tǒng)計(jì)結(jié)果分成5組:[50,100),[100,150),[150,200),[200,250),[250,300],繪制如圖所示的頻率分布直方圖.
(1)若續(xù)航里程在[100,150)的車輛數(shù)為5,求抽取的樣本容量n及頻率分布直方圖中x的值;
(2)在(1)的條件下,若從續(xù)航里程在[200,300]的車輛中隨機(jī)抽取2輛車,求其中恰有一輛車的續(xù)航里程為[250,300]的概率.

分析 (1)頻數(shù)=頻率×樣本容量求車輛數(shù)求出n的值,利用小矩形的面積和為1,求得x值;
(2)續(xù)航里程在[200,250)的車輛數(shù)為:20×0.003×50=3輛;用A,B,C表示,續(xù)駛里程在[250,300]的車輛數(shù)為:20×0.002×50=2輛,用a,b表示,分別求得5輛中隨機(jī)抽取2輛車的抽法種數(shù)與其中恰有一輛汽車的續(xù)駛里程為[200,250)抽法種數(shù),根據(jù)古典概型的概率公式計(jì)算.

解答 解:(1)由題意得n=$\frac{5}{0.005×50}$=20輛,
由直方圖可得:(0.002+0.005+0.008+x+0.002)×50=1,
∴x=0.003;
(2)由(1)n=20,
∴續(xù)航里程在[200,250)的車輛數(shù)為:20×0.003×50=3輛;用A,B,C表示,
續(xù)駛里程在[250,300]的車輛數(shù)為:20×0.002×50=2輛,用a,b表示,
從這5輛中隨機(jī)抽取2輛為AB,AC,Aa,Ab,BC,Ba,Bb,Ca,Cb,ab共有10種抽法,
其中其中恰有一輛車的續(xù)航里程為[250,300]的抽法為,Aa,Ab,Ba,Bb,Ca,Cb,共有6種抽法,
故恰有一輛車的續(xù)航里程為[250,300]的概率為$\frac{6}{10}$=$\frac{3}{5}$

點(diǎn)評(píng) 本題考查直方圖、古典概型概率公式;直方圖中頻率=縱坐標(biāo)×組距,屬于一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.記max{x,y}=$\left\{\begin{array}{l}{x,x≥y}\\{y,x<y}\end{array}\right.$,若f(x),g(x)均是定義在實(shí)數(shù)集R上的函數(shù),定義函數(shù)h(x)=max{f(x),g(x)},則下列命題正確的是(  )
A.若f(x),g(x)都是單調(diào)函數(shù),則h(x)也是單調(diào)函數(shù)
B.若f(x),g(x)都是奇函數(shù),則h(x)也是奇函數(shù)
C.若f(x),g(x)都是偶函數(shù),則h(x)也是偶函數(shù)
D.若f(x)是奇函數(shù),g(x)是偶函數(shù),則h(x)既不是奇函數(shù),也不是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+y2=1(常數(shù)a>1)的離心率為$\frac{\sqrt{2}}{2}$,M、N是橢圓C上的兩個(gè)不同動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知A(a,1),B(-a,1),滿足kOM•kON=kOA•kOB(kOM表示直線OM的斜率),求|MN|取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若$\frac{a+b}{b+c}$=$\frac{sinC}{sinA-sinB}$,則∠A=( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.大學(xué)生甲、乙、丙為唐山世園會(huì)的兩個(gè)景區(qū)提供翻譯服務(wù),每個(gè)景區(qū)安排一名或兩名大學(xué)生,則甲、乙被安排到不同景區(qū)的概率為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{5}{6}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.函數(shù)f(x)=$\frac{x}{{x}^{2}+2x+9}$(x>0)的值域?yàn)椋?,$\frac{1}{8}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)函數(shù)f(x)=|2x-6|.
(Ⅰ)求不等式f(x)≤x的解集;
(Ⅱ)若存在x使不等式f(x)-2|x-1|≤a成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在一個(gè)壇子中裝有16個(gè)除顏色外完全相同的玻璃球,其中有2個(gè)紅的,3個(gè)藍(lán)的,5個(gè)綠的,6個(gè)黃的,從中任取一球,放回后,再取一球.求第一次取出紅球且第二次取出黃球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知等差數(shù)列{an}的公差為1,且a1,a3,a9成等比數(shù)列
(1)求數(shù)列{an}的通項(xiàng)公式an及其前n項(xiàng)和Sn
(1)若數(shù)列{$\frac{1}{{S}_{n}}$}的前n項(xiàng)和為Tn,證明Tn<2.

查看答案和解析>>

同步練習(xí)冊(cè)答案