6.一個(gè)棱錐的三視圖如圖所示,其中側(cè)視圖為正三角形,則該四棱錐的體積是( 。
A.$\frac{1}{3}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{3}}}{6}$

分析 由四棱錐的三視圖可知,該四棱錐底面為ABCD長(zhǎng)方形,△PAD是邊長(zhǎng)為1的等邊三角形,PO垂直于AD于點(diǎn)O,其中O為AD的中點(diǎn),即可求出它的體積、

解答 解:由四棱錐的三視圖可知,該四棱錐底面為ABCD為邊長(zhǎng)為1和2的長(zhǎng)方形,
△PAD是邊長(zhǎng)為1的等邊三角形,PO垂直于AD于點(diǎn)O,其中O為AD的中點(diǎn),
所以四棱錐的體積為V=$\frac{1}{3}$×1×2×$\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{3}$,
故選:C.

點(diǎn)評(píng) 本題主要考查三視圖的識(shí)別和應(yīng)用以及錐體的體積的計(jì)算,考查學(xué)生的推理能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.在銳角三角形ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且$\frac{{{b^2}-{a^2}-{c^2}}}{ac}$=$\frac{{cos({A+C})}}{sinAcosA}$.
(1)求角A;
(2)若a=$\sqrt{2}$,求bc的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.兩圓C1:(x+2)2+(y+1)2=4與C2:(x-2)2+(y-1)2=4的位置關(guān)系為( 。
A.內(nèi)切B.外切C.相交D.相離

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知圓O:(x-1)2+y2=9,圓O上的直線l:xcosθ+ysinθ=2+cosθ(0<θ<$\frac{π}{2}$)距離為1的點(diǎn)有(  )個(gè).
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知全集U={1,2,3,6},集合A={1,3},則∁UA={2,6}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.對(duì)于函數(shù)f1(x)、f2(x)、h(x),如果存在實(shí)數(shù)a,b使得h(x)=a•f1(x)+b•f2(x),那么稱h(x)為f1(x)、f2(x)的生成函數(shù).
(1)下面給出兩組函數(shù),h(x)是否分別為f1(x)、f2(x)的生成函數(shù)?并說(shuō)明理由;
第一組:f1(x)=sinx,f2(x)=cosx,$h(x)=sin(x+\frac{π}{3})$
第二組:${f_1}(x)={x^2}-x$,${f_2}(x)={x^2}+x+1$,h(x)=x2-x+1;
(2)設(shè)f1(x)=log2x,${f_2}(x)={log_{\frac{1}{2}}}x$,a=2,b=1,生成函數(shù)h(x).若不等式h(4x)+t•h(2x)<0在x∈[2,4]上有解,求實(shí)數(shù)t的取值范圍;
(3)設(shè)f1(x)=x(x>0),${f_2}(x)=\frac{1}{x}(x>0)$,取a>0,b>0,生成函數(shù)h(x)圖象的最低點(diǎn)坐標(biāo)為(2,8).若對(duì)于任意正實(shí)數(shù)x1,x2,且x1+x2=1,試問(wèn)是否存在最大的常數(shù)m,使h(x1)h(x2)≥m恒成立?如果存在,求出這個(gè)m的值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖所示,在三棱柱ABC-A1B1C1中,底面△ABC是邊長(zhǎng)為6的等邊三角形,點(diǎn)A1
在底面△ABC內(nèi)的射影為△ABC的中心O,D,E分別為A1B1,BC的中點(diǎn).
(Ⅰ)求證:DE∥平面ACC1A1;
(Ⅱ)若AA1=4$\sqrt{3}$,求四棱錐A1-CBB1C1的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.以下命題正確的個(gè)數(shù)為( 。
①若“p且q”與“?p或q”均為假命題,則p真q假;
②“a>0”是“函數(shù)f(x)=|(ax-1)x|在區(qū)間(-∞,0)上單調(diào)遞減”的充要條件;
③函數(shù)f(x)=3ax+1-2a在(-1,1)上存在x0,使得f(x0)=0,則a的取值范圍是a<-1或$a>\frac{1}{5}$;
 ④若向量$\overrightarrow a=({-1,2,3}),\overrightarrow b=({2,m,-6})$,且$\overrightarrow a$與$\overrightarrow b$的夾角為鈍角,則m<10.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.求下列函數(shù)的定義域.
(1)$f(x)=\frac{{\sqrt{{x^2}-2x-15}}}{{|{x+3}|-3}}$
(2)$f(x)=\frac{1}{{1+\frac{1}{x-1}}}+{(2x-1)^0}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案