18.某種飲料每箱裝4聽,如果其中有一聽不合格,從一箱中隨機抽取兩聽,則抽到不合格品的概率為( 。
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

分析 本題是一個等可能事件的概率,試驗發(fā)生包含的事件是從4聽飲料中抽2聽,共有C42種結(jié)果,滿足條件的事件是檢測出不合格飲料,共有C31種結(jié)果,根據(jù)古典概型概率公式得到結(jié)果.

解答 解:從一箱中隨機抽取兩聽,共${C}_{4}^{2}$種方法,
如果其中有一聽不合格,共${C}_{3}^{1}$種方法,
故抽到不合格品的概率P=$\frac{{C}_{3}^{1}}{{C}_{4}^{2}}$=$\frac{1}{2}$,
故選:D.

點評 本題考查等可能事件的概率,如果出現(xiàn)至少或至多這種數(shù)學用語,可以用對立事件來解決,本題是一個典型的概率問題,是一個基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

8.為了了解創(chuàng)建金臺區(qū)教育現(xiàn)代化過程中學生對創(chuàng)建工作的滿意情況,相關部門對某中學的100名學生進行調(diào)查.得到如下的統(tǒng)計表:
滿意不滿意合計
男生50
女生15
合計100
已知在全部100名學生中隨機抽取1人對創(chuàng)建工作滿意的概率為$\frac{4}{5}$.
(1)在上表中的空白處填上相應的數(shù)據(jù);
(2)是否有充足的證據(jù)說明學生對創(chuàng)建工作的滿意情況與性別有關?
附:Χ2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
參考數(shù)據(jù)當Χ2≤2.706時,無充分證據(jù)判定變量A,B有關聯(lián),可以認為兩變量無關聯(lián);
當Χ2>2.706時,有90%的把握判定變量A,B有關聯(lián);
當Χ2>3.841時,有95%的把握判定變量A,B有關聯(lián);
當Χ2>6.635時,有99%的把握判定變量A,B有關聯(lián).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.設Sn為等差數(shù)列{an}的前n項和,若S8=4a3,則a6=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.甲、乙兩個籃球運動員互不影響地在同一位置投球,命中率分別為$\frac{1}{2}$與p,且乙投球3次均未命中的概率為$\frac{1}{27}$.
(1)求乙投球的命中率p;
(2)若甲投球1次,乙投球2次,兩人共命中的次數(shù)記為ξ,求ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.在△ABC中,角A,B,C所對的邊分別是a,b,c,且△ABC三邊a,b,c上的高分別為$\frac{1}{13}$,$\frac{1}{11}$,$\frac{1}{5}$,則△ABC為( 。
A.銳角三角形B.直角三角形
C.鈍角三角形D.不存在這樣的三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.若函數(shù)f(x)=sinωx(ω>0)在區(qū)間(-$\frac{π}{4}$,$\frac{π}{3}$)上單調(diào)遞增,則ωmax=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.函數(shù)y=$\frac{1-cosx}{sinx}$為( 。
A.奇函數(shù)B.偶函數(shù)
C.既不是奇函數(shù),也不是偶函數(shù)D.既是奇函數(shù),也是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.一個幾何體的三視圖如圖所示,設該幾何體的體積為V,則3(V+$\frac{2π}{3}$-16)的值為( 。
A.$\sqrt{3}$B.2$\sqrt{3}$C.3$\sqrt{3}$D.4$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,AD∥BC,過A、C、D三點的圓O與直線AB相切,且圓O過線段BC的中點E.
(1)求證:∠B=∠ACD;
(2)求$\frac{AC}{CD}$的值.

查看答案和解析>>

同步練習冊答案