分析 對|k$\overrightarrow{a}$$+\overrightarrow$|=$\sqrt{3}$|$\overrightarrow{a}$-k$\overrightarrow$|兩邊平方,得出$\overrightarrow{a}•\overrightarrow$關(guān)于k的函數(shù),利用基本不等式即可求出最小值.
解答 解:|$\overrightarrow{a}$|=|$\overrightarrow$|=1,
∵|k$\overrightarrow{a}$$+\overrightarrow$|=$\sqrt{3}$|$\overrightarrow{a}$-k$\overrightarrow$|,∴k2+2k$\overrightarrow{a}•\overrightarrow$+1=3(1-2k$\overrightarrow{a}•\overrightarrow$+k2).
即k2-4$\overrightarrow{a}•\overrightarrow$+1=0.
∴$\overrightarrow{a}•\overrightarrow$=$\frac{{k}^{2}+1}{4k}$=$\frac{k}{4}+\frac{1}{4k}$≥2$\sqrt{\frac{1}{16}}$=$\frac{1}{2}$.
故答案為:$\frac{1}{2}$.
點評 本題考查了平面向量的數(shù)量級運算,基本不等式的應(yīng)用,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若$\overrightarrow{a}$∥$\overrightarrow$,則|$\overrightarrow{a}$|-|$\overrightarrow$|=|$\overrightarrow{a}$+$\overrightarrow$| | B. | 若$\overrightarrow{a}$∥$\overrightarrow$,則|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$|+|$\overrightarrow$| | ||
C. | 若|$\overrightarrow{a}$|-|$\overrightarrow$|<|$\overrightarrow{a}$+$\overrightarrow$|,則$\overrightarrow{a}$,$\overrightarrow$不共線 | D. | 若$\overrightarrow{a}$,$\overrightarrow$不共線,則|$\overrightarrow{a}$+$\overrightarrow$|<|$\overrightarrow{a}$|+|$\overrightarrow$| |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(5)-f(3)>0 | B. | f(6)-f(2)<0 | C. | 4f(2)-f(3)<0 | D. | 4f(6)-f(5)>0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | 2 | C. | 2i | D. | 3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com