精英家教網 > 高中數學 > 題目詳情
已知f(x)=ax3+bsin x+3且f(1)=2014,f(-1)的值為
 
考點:函數奇偶性的性質
專題:計算題,函數的性質及應用
分析:由題意,f(1)=a+b+3=2014從而得到a+b=2011;再寫出f(-1)并求得.
解答: 解:由題意,f(1)=a+b+3=2014;
故a+b=2011;
f(-1)=-(a+b)+3=-2011+3=2008;
故答案為:-2008.
點評:本題考查了函數的性質應用,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖,在平面直角坐標系xOy中,已知橢圓C:
x2
24
+
y2
12
=1,設R(x0,y0)是橢圓C上的任一點,從原點O向圓R:(x-x02+(y-y02=8作兩條切線,分別交橢圓于點P,Q.
(1)若直線OP,OQ互相垂直,求圓R的方程;
(2)若直線OP,OQ的斜率存在,并記為k1,k2,求證:2k1k2+1=0;
(3)試問OP2+OQ2是否為定值?若是,求出該值;若不是,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

執(zhí)行如圖所示的程序框圖,輸出的T=(  )
A、29B、44C、52D、62

查看答案和解析>>

科目:高中數學 來源: 題型:

在棱長為2的正方體ABCD-A1B1C1D1中,
AD1
A1B
=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

下列說法不正確的是( 。
A、命題“若x>0且y>0,則x+y>0”的否命題是假命題
B、命題“?x0∈R,x02-x0-1<0”的否定是“?x∈R,x2-x-1≥0”
C、“φ=
π
2
”是“y=sin(2x+φ)為偶函數”的充要條件
D、a<0時,冪函數y=xa在(0,+∞)上單調遞減

查看答案和解析>>

科目:高中數學 來源: 題型:

函數f(x)=2sinωx(ω>0)在[-
π
6
,
π
4
]上遞增,則ω的取值范圍是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

若平面α的法向量為
n
,直線l的方向向量為
a
,直線l與平面α的夾角為θ,則下列關系式成立的是( 。
A、cos θ=
n•a
|n||a|
B、cos θ=
|n•a|
|n||a|
C、sin θ=
n•a
|n||a|
D、sin θ=
|n•a|
|n||a|

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數y=sin(ωx+
π
4
)(ω>0)的圖象的相鄰兩條對稱軸之間的距離等于
π
3
,若存在最小正數m,使得函數f(x)的圖象向左平移m個單位后所對應的函數是偶函數,則該偶函數在[0,π]上的單調增區(qū)間為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知O是坐標原點,點A(-1,1),若點M(x,y)為平面區(qū)域
x+y≥2
2x-1≤1
log2(y-1)≤0
上的一個動點,則
AO
OM
的取值范圍是( 。
A、[-2,0]
B、[-2,0)
C、[0,2]
D、(0,2]

查看答案和解析>>

同步練習冊答案