【題目】如圖,是邊長為1的正三角形,點P在所在的平面內(nèi),且(a為常數(shù)),下列結(jié)論中正確的是( )
A.當(dāng)時,滿足條件的點P有且只有一個
B.當(dāng)時,滿足條件的點P有三個
C.當(dāng)時,滿足條件的點P有無數(shù)個
D.當(dāng)a為任意正實數(shù)時,滿足條件的點總是有限個
【答案】C
【解析】
以所在直線為軸,中點為原點,建立直角坐標(biāo)系,如圖所示設(shè),將式子化為關(guān)于、、的式子,化簡整理可得,討論的取值范圍,可得當(dāng)時方程表示以點為圓心,半徑的圓,滿足條件的點有無數(shù)個,可知只有項符合題意.
以所在直線為軸,中點為原點,建立直角坐標(biāo)系,如圖所示
則,,,
設(shè),可得,
,,
∵,
∴,
化簡得:,即,
配方,得…(1)
當(dāng)時,方程(1)的右邊小于0,故不能表示任何圖形;
當(dāng)時,方程(1)的右邊為0,表示點,恰好是正三角形的重心;
當(dāng)時,方程(1)的右邊大于0,表示以為圓心,半徑為的圓,
由此對照各個選項,可得只有C項符合題意.
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,某市為促進(jìn)生活垃圾的分類處理,將生活垃圾分為廚余垃圾、可回收物和其他垃圾三類,并分別設(shè)置了相應(yīng)的垃圾箱.為調(diào)查居民生活垃圾分類投放情況,現(xiàn)隨機(jī)抽取了該市三類垃圾箱中總計1000t生活垃圾.經(jīng)分揀以后數(shù)據(jù)統(tǒng)計如下表(單位:):根據(jù)樣本估計本市生活垃圾投放情況,下列說法錯誤的是( )
廚余垃圾”箱 | 可回收物”箱 | 其他垃圾”箱 | |
廚余垃圾 | 400 | 100 | 100 |
可回收物 | 30 | 240 | 30 |
其他垃圾 | 20 | 20 | 60 |
A.廚余垃圾投放正確的概率為
B.居民生活垃圾投放錯誤的概率為
C.該市三類垃圾箱中投放正確的概率最高的是“可回收物”箱
D.廚余垃圾在“廚余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量的方差為20000
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于定義在區(qū)間的函數(shù),定義:(),(),其中,表示函數(shù)在上的最小值,表示函數(shù)在上的最大值.
(1)若,,試寫出、的表達(dá)式;
(2)設(shè)且,函數(shù),,如果與恰好為同一函數(shù),求的取值范圍.
(3)若存在最小正整數(shù),使得對任意的成立,則稱函數(shù)為上的“階收縮函數(shù)”,已知函數(shù),,試判斷是否為上的“階收縮函數(shù)”,如果是,求出對應(yīng)的,如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中,,,是實數(shù)常數(shù),).
(1)若,函數(shù)的圖象關(guān)于點成中心對稱,求,的值;
(2)若函數(shù)滿足條件(1),且對任意,總有,求的取值范圍;
(3)若,函數(shù)是奇函數(shù),,,且對任意時,不等式恒成立,求負(fù)實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某商場2018年洗衣機(jī)、電視機(jī)和電冰箱三種電器各季度銷量的百分比堆積圖(例如:第3季度內(nèi),洗衣機(jī)銷量約占,電視機(jī)銷量約占,電冰箱銷量約占).根據(jù)該圖,以下結(jié)論中一定正確的是( )
A. 電視機(jī)銷量最大的是第4季度
B. 電冰箱銷量最小的是第4季度
C. 電視機(jī)的全年銷量最大
D. 電冰箱的全年銷量最大
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】垃圾種類可分為可回收垃圾,干垃圾,濕垃圾,有害垃圾,為調(diào)查中學(xué)生對垃圾分類的了解程度某調(diào)查小組隨機(jī)抽取了某市的名高中生,請他們指出生活中若干項常見垃圾的種類,把能準(zhǔn)確分類不少于項的稱為“比較了解”少于三項的稱為“不太了解”調(diào)查結(jié)果如下:
項 | 項 | 項 | 項 | 項 | 項 | 項以上 | |
男生(人) | |||||||
女生(人) |
(1)完成如下列聯(lián)表并判斷是否有的把握認(rèn)為了解垃圾分類與性別有關(guān)?
比較了解 | 不太了解 | 合計 | |
男生 | ________ | ________ | ________ |
女生 | ________ | ________ | ________ |
合計 | ________ | ________ | ________ |
p>
(2)抽取的名高中生中按照男、女生采用分層抽樣的方法抽取人的樣本.
(i)求抽取的女生和男生的人數(shù);
(ii)從人的樣本中隨機(jī)抽取兩人,求兩人都是女生的概率.
參考數(shù)據(jù):
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中:
①已知點,動點滿足,則點的軌跡是一個圓;
②已知,則動點的軌跡是雙曲線;
③兩個隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對值就越接近于1;
④在平面直角坐標(biāo)系內(nèi),到點和直線的距離相等的點的軌跡是拋物線;
正確的命題是_________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com