3.執(zhí)行如圖的程序框圖,輸出S的值是(  )
A.2B.1C.$\frac{1}{2}$D.-1

分析 框圖首先給變量S,k賦值S=2,k=1,然后判斷k<2016是否成立,成立則執(zhí)行S=$\frac{1}{1-S}$,否則跳出循環(huán),輸出S,然后依次判斷執(zhí)行,由執(zhí)行結(jié)果看出,S的值呈周期出現(xiàn),根據(jù)最后當(dāng)k=2015時(shí)算法結(jié)束可求得S的值.

解答 解:框圖首先給變量S,k賦值S=2,k=1.
判斷1<2016,執(zhí)行S=$\frac{1}{1-2}$=-1,k=1+1=2;
判斷2<2016,執(zhí)行S=$\frac{1}{1-(-1)}$=$\frac{1}{2}$,k=2+1=3;
判斷3<2016,執(zhí)行S=$\frac{1}{1-\frac{1}{2}}$=2,k=3+1=4;
判斷4<2016,執(zhí)行S=$\frac{1}{1-2}$=-1,k=4+1=5;

程序依次執(zhí)行,由上看出,程序每循環(huán)3次S的值重復(fù)出現(xiàn)1次.
而由框圖看出,當(dāng)k=2015時(shí)還滿足判斷框中的條件,執(zhí)行循環(huán),當(dāng)k=2016時(shí),跳出循環(huán).
又2015=671×3+2.
所以當(dāng)計(jì)算出k=2015時(shí),算出的S的值為$\frac{1}{2}$.
此時(shí)2016不滿足2016<2016,跳出循環(huán),輸出S的值為$\frac{1}{2}$.
故選:C.

點(diǎn)評 本題考查了循環(huán)結(jié)構(gòu)的程序框圖的應(yīng)用,是當(dāng)型結(jié)構(gòu),即先判斷后執(zhí)行,滿足條件執(zhí)行循環(huán),不滿足條件,跳出循環(huán),算法結(jié)束,解答的關(guān)鍵是算準(zhǔn)周期,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖是函數(shù)y=Asin(ωx+ϕ)+b,(A>0,ω>0,|ϕ|<$\frac{π}{2}$)的一段圖象.求此函數(shù)解析式,并求出對稱軸方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知命題p:函數(shù)y=ln$\sqrt{x-4}$為增函數(shù),命題q:函數(shù)y=$\frac{1}{tanx+1}$+tanx+2的最小值為3,則下列命題是真命題的是( 。
A.(¬p)∧qB.p∧qC.¬(p∨q)D.p∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.2016年5月20日,針對部分“二線城市”房價(jià)上漲過快,媒體認(rèn)為國務(wù)院常務(wù)會(huì)議可能再次確定五條措施(簡稱“國五條”).為此,記者對某城市的工薪階層關(guān)于“國五條”態(tài)度進(jìn)行了調(diào)查,隨機(jī)抽取了60人,作出了他們的月收入的頻率分布直方圖(如圖),同時(shí)得到了他們的月收入情況與“國五條”贊成人數(shù)統(tǒng)計(jì)表(如表):
月收入(百元)贊成人數(shù)
[15,25)8
[25,35)7
[35,45)10
[45,55)6
[55,65)2
[65,75)2
(Ⅰ)試根據(jù)頻率分布直方圖估計(jì)這60人的中位數(shù)和平均月收入;
(Ⅱ)若從月收入(單位:百元)在[65,75)的被調(diào)查者中隨機(jī)選取2人進(jìn)行追蹤調(diào)查,求被選取的2人都不贊成的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合A={-2,-1,0,1,2},B={x|x=(-1)n+n,n∈N},則A∩B=( 。
A.{0,2}B.{0,1,2}C.{-2,0,1,2}D.{-2,-1,0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2^x},(x<1)\\ f(x-1),(x≥1)\end{array}$,則f(log29)的值為$\frac{9}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)離散型隨機(jī)變量ξ的分布列為P(ξ=k)=$\frac{1}{n}$(k=1,2,…,n),如果P(ξ<4)=0.3,那么n的值為( 。
A.3B.4C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知$\sqrt{11-6\sqrt{2}}$的整數(shù)部分為a,小數(shù)部分為b.求a+b+$\frac{2}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),A,B,C三點(diǎn)滿足$\overrightarrow{AC}$=2$\overrightarrow{CB}$,已知A(1,cosx),B(1+cosx,cosx),x∈[0,$\frac{π}{2}$],f(x)=$\overrightarrow{OA}$•$\overrightarrow{OC}$-(2m+$\frac{2}{3}$)|$\overrightarrow{AB}$|.
(Ⅰ)求|$\overrightarrow{OC}$|的范圍;
(Ⅱ)若f(x)的最小值為-$\frac{3}{2}$,求實(shí)數(shù)m的值.

查看答案和解析>>

同步練習(xí)冊答案