已知等差數(shù)列滿足:,的前n項(xiàng)和為.
(1)求及;
(2)令,求數(shù)列的前n項(xiàng)和.
(1);(2).
解析試題分析:(1)等差數(shù)列問題?赊D(zhuǎn)化為其基本量首項(xiàng)和公差的問題,這是最基本的思路,但有時如果充分利用等差數(shù)列的性質(zhì),可能達(dá)到簡化計算的目的,本題可用首項(xiàng)和公差表示,解之即得首項(xiàng)和公差,然后再用等差數(shù)列的通項(xiàng)公式和前項(xiàng)的和公式求出結(jié)果;(2)把(1)中的結(jié)果代入,再根據(jù)其特征選擇合適的方法求前n項(xiàng)和,本題是利用裂項(xiàng)相消法求和.
試題解析:(1)設(shè)等差數(shù)列的首項(xiàng)為,公差為, 1分
由,解得. 5分
由于,所以. 7分
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/cd/c/1v4e44.png" style="vertical-align:middle;" />,所以,因此. 9分
故, 13分
所以數(shù)列的前n項(xiàng)和. 14分
考點(diǎn):等差數(shù)列的通項(xiàng)公式、前n項(xiàng)和的公式、裂項(xiàng)相消法.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列中,,,數(shù)列中,,且點(diǎn)在直線上.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)求數(shù)列的通項(xiàng)公式;
(Ⅲ)若,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列{an}中,首項(xiàng)a1=1,公差d為整數(shù),且滿足a1+3<a3,a2+5>a4,數(shù)列{bn}滿足bn=,其前n項(xiàng)和為Sn.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若S2為S1,Sm (m∈N*)的等比中項(xiàng),求正整數(shù)m的值.
(3)對任意正整數(shù)k,將等差數(shù)列{an}中落入?yún)^(qū)間(2k,22k)內(nèi)項(xiàng)的個數(shù)記為ck,求數(shù)列{cn}的前n項(xiàng)和Tn
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在數(shù)列中,,,對任意成立,令,且是等比數(shù)列.
(1)求實(shí)數(shù)的值;
(2)求數(shù)列的通項(xiàng)公式;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列為遞增等差數(shù)列,且是方程的兩根.?dāng)?shù)列為等比數(shù)列,且.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)是各項(xiàng)都為正數(shù)的等比數(shù)列,是等差數(shù)列,且,,.
(1)求數(shù)列,的通項(xiàng)公式;
(2)設(shè)數(shù)列的前項(xiàng)和為,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知在等差數(shù)列{}中,=3,前7項(xiàng)和=28.
(I)求數(shù)列{}的公差d;
(II)若數(shù)列{}為等比數(shù)列,且,求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知無窮數(shù)列中,、 、、構(gòu)成首項(xiàng)為2,公差為-2的等差數(shù)列,、、、,構(gòu)成首項(xiàng)為,公比為的等比數(shù)列,其中,.
(1)當(dāng),,時,求數(shù)列的通項(xiàng)公式;
(2)若對任意的,都有成立.
①當(dāng)時,求的值;
②記數(shù)列的前項(xiàng)和為.判斷是否存在,使得成立?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列滿足:,的前項(xiàng)和為。
(1)求及;
(2)令(其中為常數(shù),且),求證數(shù)列為等比數(shù)列。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com