1.已知tanα=3,則$\frac{2sinα-cosα}{2sinα+cosα}$的值是$\frac{5}{7}$.

分析 原式分子分母除以cosα,利用同角三角函數(shù)間的基本關系化簡,將tanα的值代入計算即可求出值.

解答 解:∵tanα=3,
∴原式=$\frac{2tanα-1}{2tanα+1}$=$\frac{6-1}{6+1}$=$\frac{5}{7}$,
故答案為:$\frac{5}{7}$.

點評 此題考查了同角三角函數(shù)基本關系的運用,熟練掌握基本關系是解本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

11.以F1(-4,0),F(xiàn)2(4,0)為焦點,且過直線l:y=x-2上一點P的雙曲線中,實軸最長的雙曲線方程為為$\frac{{x}^{2}}{10}$-$\frac{{y}^{2}}{6}$=1,此時點P坐標為(5,3).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.2017年某地區(qū)高考改革方案出臺,選考科目有:思想政治,歷史,地理,物理,化學,生命科學,要求考生從中自選三門參加高考,甲,乙兩名學生各自選考3門課程(每門課程被選中的機會相等),兩位同學約定共同選擇思想政治,不選物理,則他們選考的3門課程都相同的概率是$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知△ABC的三邊長為AB=2,BC=1,AC=$\sqrt{3}$,則$\overrightarrow{AB}$•$\overrightarrow{BC}$+$\overrightarrow{BC}$•$\overrightarrow{CA}$+$\overrightarrow{CA}$•$\overrightarrow{AB}$的值為( 。
A.0B.4C.-4D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知數(shù)列{an}的前n的項和為Sn,an≠0,且2Sn是a1與anan+1的等差中項.
(1)若a1=1,求數(shù)列{an}的通項公式;
(2)在(1)的條件下,求數(shù)列{$\frac{(-1)^{n}•n}{{{a}_{n}a}_{n+1}}$}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.若點(a,9)在函數(shù)y=3x的圖象上,則y=loga(x2+2x+5)的最小值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.設數(shù)列{an},(n≥1,n∈N)滿足a1=2,a2=6,且(an+2-an+1)-(an+1-an)=2,若[x]表示不超過x的最大整數(shù),則[$\frac{2016}{{a}_{1}}$+$\frac{2016}{{a}_{2}}$+…+$\frac{2016}{{a}_{2016}}$]=2015.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知點P1(a1,b1),P2(a2,b2),…Pn(an,bn),(n為正整數(shù))都在函數(shù)y=($\frac{1}{2}$)x的圖象上.
(1)若數(shù)列{an}是等差數(shù)列,證明:數(shù)列{bn}是等比數(shù)列;
(2)設an=n,(n∈N+),過點Pn,Pn+1的直線與兩坐標軸所圍成的三角形面積為cn,試求最小的實數(shù)t,使cn≤t對一切正整數(shù)n恒成立;
(3)對(2)中的數(shù)列{an},對每個正整數(shù)k,在ak與ak+1之間插入3k-1個3,得到一個新的數(shù)列{dn},設Sn是數(shù)列{dn}的前n項和,試探究2016是否是數(shù)列{Sn}中的某一項,寫出你探究得到的結論并給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.一空間幾何體的三視圖如圖所示,該幾何體的體積為12π+$\frac{8\sqrt{5}}{3}$,則正視圖與側視圖中x的值為( 。
A.5B.4C.3D.2

查看答案和解析>>

同步練習冊答案