14.設(shè)動(dòng)點(diǎn)P(t,0),Q(1,t),其中參數(shù)t∈[0,1],則線段PQ掃過(guò)的平面區(qū)域的面積是$\frac{1}{2}$.

分析 如圖所示,O(0,0),A(1,0),B(1,1).由于動(dòng)點(diǎn)P(t,0),Q(1,t),其中參數(shù)t∈[0,1],可得P點(diǎn)是線段OA上的任意一點(diǎn),點(diǎn)Q是線段AB上的任意一點(diǎn).即可得出面積.

解答 解:如圖所示,
O(0,0),A(1,0),B(1,1).
∵動(dòng)點(diǎn)P(t,0),Q(1,t),其中參數(shù)t∈[0,1],
∴P點(diǎn)是線段OA上的任意一點(diǎn),點(diǎn)Q是線段AB上的任意一點(diǎn).
因此線段PQ掃過(guò)的平面區(qū)域是△OAB,其面積S=$\frac{1}{2}×|OA|×|AB|$=$\frac{1}{2}×{1}^{2}$=$\frac{1}{2}$.
故答案為:$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查了參數(shù)的應(yīng)用、三角形面積計(jì)算公式,考查了數(shù)形結(jié)合方法、推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知△ABC的三個(gè)頂點(diǎn)在橢圓4x2+5y2=6上,其中A,B兩點(diǎn)關(guān)于原點(diǎn)O對(duì)稱,設(shè)直線AC的斜率為k1,直線BC的斜率為k2.則k1k2的值為(  )
A.-$\frac{5}{4}$B.-$\frac{4}{5}$C.$\frac{4}{5}$D.$\frac{2\sqrt{5}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知f(x)=|x-1|+|x+a|,g(a)=a2-a-2.
(1)若a=3,解關(guān)于x的不等式f(x)>g(a)+2;
(2)當(dāng)x∈[-a,1]時(shí)恒有f(x)≤g(a),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.若一圓經(jīng)過(guò)直線l:2x+y+4=0和圓C:x2+y2+2x-4y+1=0的交點(diǎn),求:
(1)面積最小的圓的方程;
(2)過(guò)點(diǎn)(2,-1)的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在平面直角坐標(biāo)系中,以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=\sqrt{2}+t\\ y=1-2t\end{array}$(t為參數(shù)),圓C的極坐標(biāo)方程為ρ=1.
(Ⅰ)求直線l與圓C的公共點(diǎn)的個(gè)數(shù);
(Ⅱ)在平面直角坐標(biāo)系中,圓C經(jīng)過(guò)伸縮變換$\left\{\begin{array}{l}x'=x\\ y'=2y\end{array}$得到曲線Ω,設(shè)M(x,y)為曲線Ω上任意一點(diǎn),求4x2+xy+y2的最大值,并求出此時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.以直角坐標(biāo)系xOy的原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,且兩坐標(biāo)系相同的長(zhǎng)度單位.已知點(diǎn)N的極坐標(biāo)為($\sqrt{2}$,$\frac{π}{4}$),M是曲線C1:ρ=1上任意一點(diǎn),點(diǎn)G滿足$\overrightarrow{OG}$=$\overrightarrow{OM}$+$\overrightarrow{ON}$,設(shè)點(diǎn)G的軌跡為曲線C2
(1)求曲線C2的直角坐標(biāo)方程;
(2)若過(guò)點(diǎn)P(2,0)的直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=2-\frac{1}{2}t}\\{y=\frac{{\sqrt{3}}}{2}t}\end{array}}$(t為參數(shù)),且直線l與曲線C2交于A,B兩點(diǎn),求$\frac{1}{|PA|}$+$\frac{1}{|PB|}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.執(zhí)行程序框圖,該程序運(yùn)行后輸出的k的值是( 。
A.6B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{x}{{ln({ax})+2}}$(a≠0).
(1)若a=2,求曲線y=f(x)在點(diǎn)(${\frac{1}{2}$,f(${\frac{1}{2}}$))處的切線方程;
(2)當(dāng)a>0時(shí),求f(x)的最小值與最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.$({x^2}+3){(x-\frac{2}{x})^6}$展開(kāi)式中常數(shù)項(xiàng)為-240.

查看答案和解析>>

同步練習(xí)冊(cè)答案