【題目】如圖,已知圓心坐標為的圓與軸及直線分別相切于、兩點,另一圓與圓外切,且與軸及直線分別相切于、兩點.
(1)求圓和圓的方程;
(2)過點作直線的平行線,求直線被圓截得的弦的長度.
【答案】(1),;(2).
【解析】
試題分析:(1)圓的圓心已知,且其與軸及直線分別相切于兩點,故半徑易知,另一圓與圓外切、且與軸及直線分別相切于兩點,由相似性易得其圓心坐標與半徑,依定義寫出兩圓的方程即可;(2)由于點位置不特殊,可以由對稱性轉(zhuǎn)化為求過點且與線平行的線被圓截得弦的長度.
試題解析:(1)由于與的兩邊均相切,故到及的距離均為的半徑,則在的平分線上,同理,也在的平分線上,
即三點共線,且為的平分線,
∵的坐標為,∴到軸的距離為1,即的半徑為1,
則的方程為,
設(shè)的半徑為,其與軸的切點為,連接、,
由可知,,
即.
則,則圓的方程為;
(2)由對稱性可知,所求的弦長等于過點,直線的平行線被圓截得的弦的長度,
此弦的方程是,即:,
圓心到該直線的距離,則弦長=.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當時,求函數(shù)的單調(diào)遞增區(qū)間;
(2)求實數(shù)的取值范圍,使在區(qū)間上是單調(diào)函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且函數(shù)在處的切線平行于直線.
(1)求實數(shù)的值;
(2)若在上存在一點,使得成立.求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若當時,函數(shù)的圖象恒在函數(shù)的圖象的上方,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知P={x|x2-8x-20≤0},S={x|1-m≤x≤1+m}.
(1)是否存在實數(shù)m,使x∈P是x∈S的充要條件,若存在,求出m的范圍;
(2)是否存在實數(shù)m,使x∈P是x∈S的必要條件,若存在,求出m的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)在區(qū)間 上有最大值,最小值.
(1)求函數(shù)的解析式;
(2)設(shè).若在時恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列說法,正確的個數(shù)是
①若兩直線的傾斜角相等,則它們的斜率也一定相等;
②一條直線的傾斜角為30°;
③傾斜角為0°的直線只有一條;
④直線的傾斜角α的集合{α|0°≤α<180°}與直線集合建立了一一對應(yīng)關(guān)系.
A.0 B.1
C.2 D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線過點,且焦點為,直線與拋物線相交于兩點.
(1)求拋物線的方程,并求其準線方程;
(2)若直線經(jīng)過拋物線的焦點,當線段的長等于5時,求直線方程.
(3)若,證明直線必過一定點,并求出該定點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com