12.若tanα=3,求值
(1)$\frac{cosα+sinα}{cosα-sinα}$,
(2)2sin2α-sinαcosα+cos2α

分析 由于tanα=3,
(1)通過“弦”化“切”,化$\frac{cosα+sinα}{cosα-sinα}$=$\frac{tanα+1}{1-tanα}$,將tanα=3代入計算即可;
(2)化2sin2α-sinαcosα+cos2α=$\frac{2ta{n}^{2}α-tanα+1}{ta{n}^{2}α+1}$,將tanα=3代入計算即可.

解答 解:(1)∵tanα=3,∴$\frac{cosα+sinα}{cosα-sinα}$=$\frac{tanα+1}{1-tanα}$=$\frac{3+1}{1-3}$=-2;
 (2)2sin2α-sinαcosα+cos2α=$\frac{2si{n}^{2}α-sinαcosα+co{s}^{2}α}{si{n}^{2}α+co{s}^{2}α}$=$\frac{2ta{n}^{2}α-tanα+1}{ta{n}^{2}α+1}$=$\frac{2{×3}^{2}-3+1}{{3}^{2}+1}$=$\frac{8}{5}$.

點評 本題考查三角函數(shù)的化簡求值,“弦”化“切”是關(guān)鍵,考查轉(zhuǎn)化思想與運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若函數(shù)y=f(x)(x∈R)滿足f(x+2)=f(x),且x∈(-1,1]時,f(x)=|x|,則函數(shù)y=f(x)的圖象與函數(shù)y=log5|x|的圖象交點個數(shù)為( 。
A.2B.6C.8D.多于8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=a+$\frac{h(x)-3sinx}{h(x)}$(x∈R)存在最大值M和最小值N,若函數(shù)h(x)是R上的偶函數(shù),且M+N=8.則實數(shù)a的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)f'(x)是函數(shù)f(x)在R的導(dǎo)函數(shù),對?x∈R,f(-x)+f(x)=x2,且?x∈[0,+∞),f'(x)>x.若f(2-a)-f(a)≥2-2a,則實數(shù)a的取值范圍為(-∞,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖:已知四棱錐P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中點,
(Ⅰ) 求證:PC∥平面EBD;
(Ⅱ) 求證:BC⊥PC.
(Ⅲ) 若:PD=DA=2,求:三棱錐E-ABD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若sin(π+α)=$\frac{3}{5}$,α是第三象限的角,則tanα=$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.集合A={x∈R|x2<9},B={x∈R|2x<4},C={x∈R|log${\;}_{\frac{1}{2}}}$x<2},則A∩B=(-3,2);A∪C=(-3,+∞);∁RB=[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,∠ADC=45°,AD=
AC=1,O為AC的中點,PO⊥平面ABCD,PO=2,M為PD的中點.
(1)證明:PB∥平面ACM;
(2)證明:AD⊥平面PAC;
(3)求四面體PACM的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列函數(shù)為偶函數(shù)的是 ( 。
A.$f(x)=\frac{{(x-1)({x^4}-3{x^2})}}{x-1}$B.f(x)=x3-2x
C.$f(x)=\frac{{{x^2}+1}}{x}$D.f(x)=x2+1

查看答案和解析>>

同步練習(xí)冊答案