【題目】已知函數(shù)在點處的切線與直線垂直.
(1)求函數(shù)的極值;
(2)若在上恒成立,求實數(shù)的取值范圍.
【答案】(1)極大值為,函數(shù)無極小值;(2)
【解析】分析:(1)由函數(shù)在點處的切線與直線垂直,利用導數(shù)的幾何意義求得,利用導數(shù)研究函數(shù)的單調(diào)性,從而可得函數(shù)的極值;(2)在上恒成立,等價于在上恒成立,令,利用導數(shù)可得當時,在上是增函數(shù),,故當時,,再證明當時不合題意即可.
詳解:(1)函數(shù)的定義域為,,
所以函數(shù)在點處的切線的斜率.
∵該切線與直線垂直,所以,解得.
∴, ,
令,解得.
顯然當時,,函數(shù)單調(diào)遞增;當時,,函數(shù)單調(diào)遞減.
∴函數(shù)的極大值為,函數(shù)無極小值.
(2)在上恒成立,等價于在上恒成立,
令,則,
令,則在上為增函數(shù),即,
①當時,,即,則在上是增函數(shù),
∴,故當時,在上恒成立.
②當時,令,得,
當時,,則在上單調(diào)遞減,,
因此當時,在上不恒成立,
綜上,實數(shù)的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】據(jù)說偉大的阿基米德逝世后,敵軍將領馬塞拉斯給他建了一塊墓碑,在墓碑上刻了一個如圖所示的圖案,圖案中球的直徑、圓柱底面的直徑和圓柱的高相等,圓錐的頂點為圓柱上底面的圓心,圓錐的底面是圓柱的下底面.
(1)試計算出圖案中球與圓柱的體積比;
(2)假設球半徑.試計算出圖案中圓錐的體積和表面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】抽樣統(tǒng)計甲、乙兩位射擊運動員的5次訓練成績(單位:環(huán)),結果如下:
運動員 | 第一次 | 第二次 | 第三次 | 第四次 | 第五次 |
甲 | 87 | 91 | 90 | 89 | 93 |
乙 | 89 | 90 | 91 | 88 | 92 |
則成績較為穩(wěn)定(方差較。┑哪俏贿\動員成績的方差為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將函數(shù)的圖像向右平衡個單位長度,再把圖象上所有點的橫坐標伸長到原來的倍(縱坐標不變)得到函數(shù)的圖象,則下列說法正確的是( )
A.函數(shù)的最大值為B.函數(shù)的最小正周期為
C.函數(shù)的圖象關于直線對稱D.函數(shù)在區(qū)間上單調(diào)遞增
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了更好地服務民眾,某共享單車公司通過向共享單車用戶隨機派送每張面額為0元,1元,2元的三種騎行券.用戶每次使用掃碼用車后,都可獲得一張騎行券.用戶騎行一次獲得1元獎券、獲得2元獎券的概率分別是0.5、0.2,且各次獲取騎行券的結果相互獨立.
(I)求用戶騎行一次獲得0元獎券的概率;
(II)若某用戶一天使用了兩次該公司的共享單車,記該用戶當天獲得的騎行券面額之和為,求隨機變量的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)生產(chǎn)一種產(chǎn)品,質(zhì)量測試分為:指標不小于為一等品;指標不小于且小于為二等品;指標小于為三等品。其中每件一等品可盈利元,每件二等品可盈利元,每件三等品虧損元,F(xiàn)對學徒甲和正式工人乙生產(chǎn)的產(chǎn)品各件的檢測結果統(tǒng)計如下:
測試指標 | ||||||
甲 | ||||||
乙 |
根據(jù)上表統(tǒng)計得到甲、乙生產(chǎn)產(chǎn)品等級的頻率分別估計為他們生產(chǎn)產(chǎn)品等級的概率。求:
(1)乙生產(chǎn)一件產(chǎn)品,盈利不小于元的概率;
(2)若甲、乙一天生產(chǎn)產(chǎn)品分別為件和件,估計甲、乙兩人一天共為企業(yè)創(chuàng)收多少元?
(3)從甲測試指標為與乙測試指標為共件產(chǎn)品中選取件,求兩件產(chǎn)品的測試指標差的絕對值大于的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《九章算術》中有如下問題:今有蒲生一日,長三尺,莞生一日,長1尺.蒲生日自半,莞生日自倍.問幾何日而長等?意思是:今有蒲第一天長高3尺,莞第一天長高1尺,以后蒲每天長高前一天的一半,莞每天長高前一天的2倍.若蒲、莞長度相等,則所需時間為()
(結果精確到0.1.參考數(shù)據(jù):lg2=0.3010,lg3=0.4771.)
A.2.6天B.2.2天C.2.4天D.2.8天
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校為了了解該校學生對于某項運動的愛好是否與性別有關,通過隨機抽查110名學生,得到如下的列聯(lián)表:
喜歡該項運動 | 不喜歡該項運動 | 總計 | |
男 | 40 | 20 | 60 |
女 | 20 | 30 | 50 |
總計 | 60 | 50 | 110 |
由公式,算得
附表:
0.025 | 0.01 | 0.005 | |
5.024 | 6.635 | 7.879 |
參照附表,以下結論正確的是( )
A. 在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別有關”
B. 在犯錯語的概率不超過0.1%的前提下,認為“愛好該項運動與性別有關”
C. 有99%以上的把握認為“愛好該項運動與性別無關”
D. 有99%以上的把握認為“愛好該項運動與性別有關”
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com