1.已知直線ln:y=x-$\sqrt{2n}$ 與圓Cn:x2+y2=2an+n交于不同的兩點An、Bn,n∈N+,數(shù)列{an}滿足:a1=1,an+1=$\frac{1}{4}$|AnBn|2,則數(shù)列{an}的通項公式為${a_n}={2^{n-1}}$.

分析 運用點到直線的距離公式和弦長公式,求得$\frac{{a}_{n+1}}{{a}_{n}}=2$,再由等比數(shù)列的通項公式求得數(shù)列{an}的通項公式.

解答 解:圓Cn:x2+y2=2an+n的圓心(0,0)到直線Ln的距離為dn=$\frac{|\sqrt{2n}|}{\sqrt{2}}$=$\sqrt{n}$,
半徑${r}_{n}=\sqrt{2{a}_{n}+n}$,
∴an+1=$\frac{1}{4}$|AnBn|2=${{r}_{n}}^{2}-{lmd944a_{n}}^{2}$=2an+n-n=2an,
即$\frac{{a}_{n+1}}{{a}_{n}}$=2,又a1=1,
∴{an}是以1為首項,2為公比的等比數(shù)列,
∴${a}_{n}={2}^{n-1}$.
故答案為:${a_n}={2^{n-1}}$.

點評 本題考查數(shù)列的通項的求法,同時考查直線和圓相交的弦長公式,考查分類討論的思想方法,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=ex-2ax,x∈R.
(1)當a=1時,求曲線f(x)在點(0,f(0))處的切線方程;
(2)在(1)的條件下,求證:f(x)>0;
(3)當a$>\frac{1}{2}$時,求函數(shù)f(x)在[0,2a]上的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.如圖,在正四棱錐P-ABCD中,PA=AB=2,點E在棱PC上.
(1)點E在何處時,PA∥平面EBD,并加以證明.
(2)求正四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.三棱柱ABC-A1B1C1的底面是邊長為2的正三角形,側(cè)棱AA1與底邊AB,AC所成的角均為60°.若頂點A1在下底面的投影恰在底邊BC上,則該三棱柱的體積為3$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{lg(x+1),x≥0}\\{-{x}^{3},x<0}\end{array}\right.$,則使得f(x)≤1成立的x的取值范圍是[-1,9].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=|x-1|+|x-a|.(a>1)
(1)若不等式f(x)≥2的解集為{x|x≤$\frac{1}{2}$或x$≥\frac{5}{2}$},求a的值;
(2)?x∈R,f(x)+|x-1|≥1,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知正項數(shù)列{an}的前n項的和是Sn,且任意n∈N+,都有$2{S_n}=a_n^2+{a_n}$.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=|an-20|,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.討論函數(shù)f(x)=$\underset{lim}{n→∞}$$\frac{x+{x}^{3}{e}^{nx}}{x+{e}^{nx}}$的連續(xù)性(n為正整數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.集合A={x|-1<x<3},集合B={x|$\frac{1}{3}<{3}^{x}<9$},則A∩B=( 。
A.(1,2)B.(-1,2)C.(1,3)D.(-1,3)

查看答案和解析>>

同步練習冊答案