分析 利用函數(shù)連續(xù)的定義即可判斷出結(jié)論.
解答 解:當(dāng)x=0時(shí),f(0)=0,
x≠0時(shí),f(x)=$\underset{lim}{n→∞}$$\frac{x+{x}^{3}{e}^{nx}}{x+{e}^{nx}}$=$\underset{lim}{n→∞}$$\frac{\frac{x}{{e}^{nx}}+{x}^{3}}{\frac{x}{{e}^{nx}}+1}$=x3,∴x→0時(shí),f(x)→0,
因此函數(shù)f(x)在x=0處連續(xù).
x≠0時(shí),函數(shù)f(x)連續(xù).
因此函數(shù)x∈R時(shí)連續(xù).
點(diǎn)評 本題考查了函數(shù)連續(xù)的定義、極限的運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(\sqrt{3},+∞)$ | B. | $[-1,\sqrt{3})$ | C. | $(-∞,-1]∪(\sqrt{3},+∞)$ | D. | $(-∞,-1)∪[\sqrt{3},+∞)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{5}$ | B. | 8 | C. | 4$\sqrt{5}$ | D. | 8$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{7}$ | B. | $\frac{8}{7}$ | C. | $\frac{10}{7}$ | D. | $\frac{13}{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
時(shí)間 | 11日 | 12日 | 13日 | 14日 | 15日 | 16日 | 17日 | 18日 | 19日 | 20日 |
AQ1 | 149 | 143 | 251 | 254 | 138 | 55 | 69 | 102 | 243 | 269 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com