12.已知復(fù)數(shù)z滿足$\frac{z}{4+2i}$=i,i是虛數(shù)單位,則在復(fù)平面內(nèi)z對應(yīng)的點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用復(fù)數(shù)的運算法則、幾何意義即可得出.

解答 解:復(fù)數(shù)z滿足$\frac{z}{4+2i}$=i,∴z=i(4+2i)=-2+4i,
則在復(fù)平面內(nèi)z對應(yīng)的點(-2,4)在第二象限.
故選:B.

點評 本題考查了復(fù)數(shù)的運算法則、幾何意義,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

9.設(shè)全集為實數(shù)集R,A={x|3≤x<7},B={x|$\frac{1}{4}$≤2x≤8},C={x|x<a}.
(1)求∁R(A∪B)
(2)如果A∩C≠∅,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{x+1≥0}\\{y-2x≥0}\\{x+y-3≤0}\end{array}\right.$,則z=x-y的最大值為( 。
A.-5B.-1C.5D.1

查看答案和解析>>

科目:高中數(shù)學 來源:2017屆河北滄州市高三9月聯(lián)考數(shù)學(理)試卷(解析版) 題型:選擇題

設(shè)集合,,則( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知直線l的參數(shù)方程是$\left\{{\begin{array}{l}{x=2+t}\\{t=-1+\sqrt{3}t}\end{array}}\right.$(t為參數(shù)),曲線C的極坐標方程是ρ=2sinθ+4cosθ.
(1)求曲線C的直角坐標方程和參數(shù)方程;
(2)求直線l被曲線C截得的弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知復(fù)數(shù)z滿足z=$\frac{2i}{1+i}$,那么z的共軛復(fù)數(shù)在復(fù)平面上對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.函數(shù)$y=x-4+\frac{9}{x+1}(x>-1)$的最小值為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)$f(x)=\frac{x}{lnx}-ax({a>0})$.
(1)若函數(shù)f(x)在(1,+∞)上是減函數(shù),求實數(shù)a的最小值;
(2)若?x1、$?{x_2}∈[{e,{e^2}}]$,使f(x1)≤f′(x2)+a成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知一正四棱錐的底邊長為4cm,高為3cm,求其全面積和體積.

查看答案和解析>>

同步練習冊答案