A. | y=sin(2x+$\frac{π}{3}}$) | B. | y=sin(2x-$\frac{π}{6}}$) | C. | y=cos(4x-$\frac{π}{3}}$) | D. | y=cos(2x+$\frac{π}{3}}$) |
分析 由函數(shù)的圖象的頂點坐標求出A,由周期求出ω,由五點法作圖求出φ的值,可得函數(shù)的解析式.
解答 解:函數(shù)y=Asin(ωx+ϕ)(ω>0,|ϕ|<$\frac{π}{2}$,x∈R)的部分圖象,可得A=1,
$\frac{T}{4}$=$\frac{π}{12}$-(-$\frac{π}{6}$)=$\frac{2π}{ω}$•$\frac{1}{4}$,
∴ω=2.
再根據(jù)五點法作圖,可得2•$\frac{π}{12}$+ϕ=$\frac{π}{2}$,
∴ϕ=$\frac{π}{3}$,
∴函數(shù)y=sin(2x+$\frac{π}{3}$).
故選:A.
點評 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的圖象的頂點坐標求出A,由周期求出ω,由五點法作圖求出φ的值,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com