9.如圖所示,在長方體ABCD-A1B1C1D1中,AB=BC=1,BB1=2,連接A1C,BD.
(1)求三棱錐A1-BCD的體積
(2)求證:BD⊥平面A1AC.

分析 (1)以BCD為棱錐的底面,則AA1為棱錐的高,代入棱錐的體積公式計算即可;
(2)連結(jié)AC,由底面正方形可知BD⊥AC,由AA1⊥平面ABCD可知AA1⊥BD,故而BD⊥平面A1AC.

解答 解:(1)在長方體ABCD-A1B1C1D1中,
∵A1A⊥平面ABCD,
即A1A是三棱錐A1-BCD的高,
∵AA1=BB1=2,AB=BC=1,∴${S_{△BCD}}=\frac{1}{2}BC×CD=\frac{1}{2}$.
∴${V_{三棱錐{A_1}-BCD}}=\frac{1}{3}{S_{△BCD}}×{A_1}A=\frac{1}{3}×\frac{1}{2}×2=\frac{1}{3}$.
證明:(2)連結(jié)AC,
∵A1A⊥平面ABCD,BD?平面ABCD,
∴A1A⊥BD.
又AB=BC,
∴矩形ABCD是正方形,
∴BD⊥AC,
∵AC?平面A1AC,A1A?平面A1AC,A1A∩AC=A,
∴BD⊥平面A1AC.

點評 本題考查了長方體的結(jié)構(gòu)特征,線面垂直的判定,棱錐的體積計算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.“k=-1”是“直線l:y=kx+2k-1在坐標(biāo)軸上截距相等”的(  )
A.充分必要條件B.必要不充分條件
C.充分不必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)a>0,b>0.若關(guān)于x,y的方程組$\left\{\begin{array}{l}{ax+y=1}\\{x+by=1}\end{array}\right.$無解,則a+b的取值范圍是(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖四邊形ABCD為菱形,G為AC與BD交點,BE⊥平面ABCD,
(1)證明:平面AEC⊥平面BED;
(2)若∠ABC=120°,AE⊥EC,S△EAC=3,令A(yù)E與平面ABCD所成角為θ,且sinθ=$\frac{{\sqrt{3}}}{3}$,求該四棱錐E-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在邊長為10(單位:m)的正方形鐵皮的四周切去四個全等的等腰三角形,再把它的四個角沿著虛線折起,做成一個正四棱錐的模型.設(shè)切去的等腰三角形的高為x m.問正四棱錐的體積V(x)何時最大?最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在三棱柱ABC-A1B1C1中,AA1⊥平面A1B1C1,∠B1A1C1=90°,D、E分別為CC1和A1B1的中點,且A1A=AC=2AB=2.
(1)求證:C1E∥平面A1BD;
(2)求三棱錐C1-A1BD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知拋物線y2=8x,點Q是圓C:x2+y2+2x-8y+13=0上任意一點,記拋物線上任意一點到直線x=-2的距離為d,則|PQ|+d的最小值為( 。
A.5B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知拋物線方程為y2=4x,直線l的方程為x-y+2=0,在拋物線上有一動點P到y(tǒng)軸的距離為d1,P到l的距離為d2,則d1+d2的最小值為( 。
A.$2\sqrt{3}-2$B.$\frac{3\sqrt{2}}{2}$-1C.2$\sqrt{2}$D.2$\sqrt{2}$+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)M為直線x-y-1=0上的動點,過M作拋物線y=x2的切線,切點分別為A,B.
(1)求證:直線AB過定點.
(2)求△ABM面積S的最小值,并求此時取得最小值時M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案