8.命題p:若x=1,則x2=1.關(guān)于命題p及其逆命題、否命題、逆否命題真假性的判斷依次如下,正確的是(  )
A.真、真、真、真B.真、假、假、真C.假、真、真、假D.假、假、真、真

分析 此題考查的是原命題、逆命題、否命題、逆否命題四種命題的真假問(wèn)題.在解答時(shí),首先要判斷準(zhǔn)原命題和逆命題的真假,然后由原命題與逆否命題和逆命題跟與否命題都互為逆否命題,且互為逆否命題的命題真假性相同,從而獲得解答.

解答 解:對(duì)于原命題“若x=1,則x2=1”當(dāng)x=1時(shí),顯然必有x2=1,所以命題成立是真命題;
又因?yàn)槟婷}為“若x2=1,則x=1”可知x2=1即x=1或x=-1,從而推不出x一定等于1,故逆命題錯(cuò)誤是假命題;
又由原命題與逆否命題和逆命題跟與否命題都互為逆否命題,且互為逆否命題的命題真假性相同.
所以原命題與逆否命題都是真命題,逆命題與否命題都是假命題.
故選:B.

點(diǎn)評(píng) 此題考查的是原命題、逆命題、否命題、逆否命題四種命題的真假問(wèn)題.在考查的過(guò)程當(dāng)中與解方程相聯(lián)系,深入考查了條件與結(jié)論之間的互推關(guān)系.此題值得同學(xué)們體會(huì)和反思.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知函數(shù)f(x)的定義域?yàn)镽,f′(x)為f(x)的導(dǎo)函數(shù),函數(shù)y=f′(x)的圖象如圖所示,且f(-2)=1,f(3)=1,則不等式f(x-2)>1的解集為(  )
A.(-2,3)B.(-2,5)C.(0,5)D.(3,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.函數(shù)f(x)=ex+x2-x在區(qū)間[-1,1]上的值域?yàn)閇1,e].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.下面給出了四個(gè)類(lèi)比推理:
(1)由“若a,b,c∈R則(ab)c=a(bc)”類(lèi)比推出“若$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$為三個(gè)向量則($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow$•$\overrightarrow{c}$)”
(2)“在平面內(nèi),三角形的兩邊之和大于第三邊”類(lèi)比推出“在空間中,四面體的任意三個(gè)面的面積之和大于第四個(gè)面的面積”
(3)“a,b為實(shí)數(shù),若a2+b2=0則a=b=0”類(lèi)比推出“z1,z2為復(fù)數(shù),若z${\;}_{1}^{2}$+z${\;}_{2}^{2}$=0則z1=z2=0”;
(4)“在平面內(nèi),過(guò)不在同一條直線上的三個(gè)點(diǎn)有且只有一個(gè)圓”類(lèi)比推出“在空間中,過(guò)不在同一個(gè)平面上的四個(gè)點(diǎn)有且只有一個(gè)球”
上述四個(gè)推理中,結(jié)論正確的序號(hào)是( 。
A.(2)(4)B.(1)(2)(4)C.(2)(3)D.(2)(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.一個(gè)多面體的直觀圖、三視圖如圖所示,則該多面體的表面積為(  )
A.3a2B.5a2C.$\frac{9}{2}$a2D.$\frac{11}{2}$a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知集合{a,b,c}={1,2,3},①a≠2;②a=3;③b=1;④c=3.若①②③④中有且僅有一個(gè)是正確的,則a-b-c的值是-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.函數(shù)f(x)=$\frac{1}{\sqrt{4-{x}^{2}}}$+lnx的定義域?yàn)椋?,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.設(shè)m、n是不同的直線,α、β、γ是不同的平面,有以下四個(gè)命題:
①若α∥β,α∥γ,則β∥γ;
②若α⊥β,m∥α,則m⊥β;           
③若m⊥α,m∥β,則α⊥β;       
④若m∥n,m∥α,則n∥α.
其中真命題的序號(hào)是①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖在三棱錐P-ABC中,D,E,F(xiàn)分別為棱PC,AC,AB的中點(diǎn),已知AD=PD,PA=6,BC=8,DF=5,求證:
(1)直線PA∥平面DEF;
(2)平面DEF⊥平面ABC.

查看答案和解析>>

同步練習(xí)冊(cè)答案