3.一個多面體的直觀圖、三視圖如圖所示,則該多面體的表面積為( 。
A.3a2B.5a2C.$\frac{9}{2}$a2D.$\frac{11}{2}$a2

分析 由三視圖可知,由俯視圖可得上、下底面的面積分別為2×$\frac{1}{2}×a×\frac{a}{2}$=$\frac{{a}^{2}}{2}$,a2,其側面是6個全等的等腰三角形,其面積為6×$\frac{1}{2}×a×a$=3a2,即可得出結論.

解答 解:由三視圖可知,結合幾何體,由俯視圖可得上、下底面的面積分別為2×$\frac{1}{2}×a×\frac{a}{2}$=$\frac{{a}^{2}}{2}$,a2,其側面是6個全等的等腰三角形,其面積為6×$\frac{1}{2}×a×a$=3a2
∴該多面體的表面積為$\frac{9}{2}{a}^{2}$.
故選:C.

點評 本題主要考查三視圖的識別和應用,以及多面體的表面積,考查學生的運算能力,比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

13.一個三棱錐的三視圖如圖所示,則該三棱錐的外接球表面積為( 。
A.$\frac{13}{3}$πB.13πC.$\frac{52π}{3}$D.52π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.設函數(shù)f(x)=x4+x-1,則f′(1)+f′(-1)等于( 。
A.-2B.-4C.4D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.設函數(shù)f(x)=(x+a)ex,已知曲線y=f(x)在點(1,f(1))處切線與直線ex-y=0平行.
(1)求a的值;
(2)求y=f(x)的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知集合A={x|-1≤x≤2},B={x|x-4≤0},則A∪B=( 。
A.{x|-1≤x<4}B.{x|2≤x<4}C.{x|x≥-1}D.{x|x≤4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.命題p:若x=1,則x2=1.關于命題p及其逆命題、否命題、逆否命題真假性的判斷依次如下,正確的是(  )
A.真、真、真、真B.真、假、假、真C.假、真、真、假D.假、假、真、真

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.某單位為了了解辦公樓的用電量y(度)與氣溫x(℃)之間的關系,隨機統(tǒng)計了四個工作日的用電量與當天平均氣溫如表:
氣溫(℃)181310-1
用電量(度)24343864
(1)由表中數(shù)據(jù)求y與x的線性回歸方程(系數(shù)$\stackrel{∧}$取整數(shù));
(2)求貢獻率R2的值(保留小數(shù)點后兩位),并做出解釋.
附計算公式:$\widehat$$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\stackrel{-2}{x}}$,$\overline{y}$=$\widehat$$\overline{x}$+$\widehat{a}$,R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-{\widehat{y}}_{i})^{2}}{\sum_{i=1}^{n}({y}_{i}-\widehat{y})^{2}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.由變量x與y相對應的一組數(shù)據(jù)(3,y1),(5,y2),(7,y3),(12,y4),(13,y5),得到的線性回歸方程為$\widehat{y}$=$\frac{1}{2}$x+20,則$\overline{y}$=( 。
A.26B.23.5C.23D.24

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知直線m、n與平面α、β,下列命題正確的是( 。
A.m⊥α,n∥β且α⊥β,則m⊥nB.m⊥α,n⊥β且α⊥β,則m⊥n
C.α∩β=m,n⊥m且α⊥β,則n⊥αD.m∥α,n∥β且α∥β,則m∥n

查看答案和解析>>

同步練習冊答案