3.設(shè)a+b=4,a<0,b>0,則a=-4時,$\frac{1}{a}+\frac{a}$取得最大值.

分析 由a+b=4,a<0,b>0,可得$\frac{1}{a}+\frac{a}$=$\frac{4}{4a}$+$\frac{a}$=$\frac{a+b}{4a}$+$\frac{a}$=$\frac{1}{4}$+$\frac{4a}$+$\frac{a}$,再由基本不等式,即可得到所求最大值和等號成立的條件.

解答 解:a+b=4,a<0,b>0,
可得$\frac{1}{a}+\frac{a}$=$\frac{4}{4a}$+$\frac{a}$
=$\frac{a+b}{4a}$+$\frac{a}$=$\frac{1}{4}$+$\frac{4a}$+$\frac{a}$
≤$\frac{1}{4}$-2$\sqrt{\frac{4a}•\frac{a}}$=$\frac{1}{4}$-2×$\frac{1}{2}$=-$\frac{3}{4}$,
當(dāng)且僅當(dāng)a=-$\frac{1}{2}$b=-4時,取得最大值.
故答案為:-4.

點評 本題考查基本不等式的運用:求最值,注意滿足的條件,考查運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)f(x)=x2-ax+2,若對任意x∈[1,+∞),f(x)>0恒成立,則實數(shù)a的取值范圍(-∞,2$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2^x}\\|{{{log}_2}x}|\end{array}\right.\begin{array}{l}{,x≤0}\\{,x>0}\end{array}$,若關(guān)于x的方程f(f(x)+m)-1=0有5個不同的實數(shù)根,則實數(shù)m的取值范圍為$(0,\frac{1}{2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知$\overrightarrow a$為單位向量,|$\overrightarrow b$|=2,其夾角為θ,有下列四個命題中的真命題是( 。
p1:|$\overrightarrow{a}$+$\overrightarrow$|>$\sqrt{3}$?θ∈[0,$\frac{2π}{3}$),
p2:|$\overrightarrow{a}$+$\overrightarrow$|>$\sqrt{3}$?θ∈($\frac{2π}{3}$,π]),
p3:|$\overrightarrow{a}$-$\overrightarrow$|>$\sqrt{3}$?θ∈[0,$\frac{π}{3}$)    
p4:|$\overrightarrow{a}$-$\overrightarrow$|>$\sqrt{3}$?θ∈($\frac{π}{3}$,π].
A.p1,p4B.p1,p3C.p2,p3D.p2,p

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.函數(shù)y=Asin(ωx+φ)(A>0,ω>0,0≤φ≤$\frac{π}{2}$)在x∈(0,7π)內(nèi)只取到一個最大值和一個最小值,且當(dāng)x=π時,ymax=3;當(dāng)x=6π,ymin=-3.
(1)求出此函數(shù)的解析式;
(2)求該函數(shù)的單調(diào)遞增區(qū)間;
(3)是否存在實數(shù)m,滿足不等式Asin(ω$\sqrt{-{m}^{2}+2m+3}$+φ)>Asin(ω$\sqrt{-{m}^{2}+4}$+φ)?若存在,求出m的范圍(或值),若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知集合A={x|k+1≤x≤2k},B={x|1≤x≤3},且A∪B=B,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知acosα+bsinα=c,acosβ+bsinβ=c,(ab≠0,α-β≠kπ,k∈Z),則${cos^2}\frac{α-β}{2}$=( 。
A.$\frac{c^2}{{{a^2}+{b^2}}}$B.$\frac{a^2}{{{c^2}+{b^2}}}$C.$\frac{b^2}{{{a^2}+{c^2}}}$D.$\frac{a}{{{c^2}+{b^2}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知a>0,b>0,若不等式$\frac{1}{a}$+$\frac{2}$≥$\frac{k}{2a+b}$恒成立,則k的最大值等于(  )
A.10B.9C.8D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{{3^x}-1,x≤1}\\{f(x-1),x>1}\end{array}}\right.$,則f(f(2))=2,值域為(-1,2].

查看答案和解析>>

同步練習(xí)冊答案