函數(shù)的圖象是函數(shù)f(x)=sin2x-
3
cos2x的圖象向右平移
π
3
個單位得到的,則函數(shù)的圖象的對稱軸可以為
 
考點:兩角和與差的正弦函數(shù),函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質(zhì)
分析:化簡可得f(x)=2sin(2x-
π
3
),從而向右平移
π
3
個單位得到的函數(shù)解析式為y=-2sin2x,令2x=kπ+
π
2
,k∈Z,可解得x=
2
+
π
4
,k∈Z.
解答: 解:∵f(x)=sin2x-
3
cos2x=2sin(2x-
π
3
),
∴向右平移
π
3
個單位得到的函數(shù)解析式為y=2sin[2(x-
π
3
)-
π
3
]=-2sin2x,
∴令2x=kπ+
π
2
,k∈Z,可解得x=
2
+
π
4
,k∈Z,
故答案為:x=
2
+
π
4
,k∈Z.
點評:本題主要考察了兩角和與差的正弦函數(shù)公式的應(yīng)用,函數(shù)y=Asin(ωx+φ)的圖象變換,屬于基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠A=90°,D是AC上一點,E是BC上一點,若AB=
1
2
BD,CE=
1
2
EB,∠BDE=120°,CD=3,則BC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lg
1-x
1+x
的定義域為集合A,a,b∈A
(1)判斷函數(shù)f(x)的奇偶性
(2)求證:f(a)+f(b)=f(
a+b
1+ab

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

滿足{3,4}⊆M⊆{0,1,2,3,4}的所有集合M的個數(shù)是( 。
A、6B、7C、8D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


一個多面體的三視圖和直觀圖如圖所示,其中D為AA1的中點.
(1)求平面B1DC把多面體ABC-A1B1C1分成兩部分的體積之比;
(2)在線段B1C上是否存在一點E,使A1E∥平面BDC,若存在,指出E點的位置,若不存在,請說明理由;
(3)求直線BD與平面B1DC夾角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1:ax+2y+6=0與直線l2:x+(a-1)y+a2-1=0,若(1)l1∥l2;(2)l1⊥l2;(3)l1與l2相交;(4)l1與l2重合,分別求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某線性規(guī)劃問題的約束條件是
y≤x
3y≥x
x+y≤4
,則下列目標(biāo)函數(shù)中,在點(3,1)處取得最小值的是(  )
A、z=2x-y
B、z=-2x+y
C、z=-
1
2
x-y
D、z=2x+y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩形ABCD中,A(-4,4),D(5,7),其對角線交點E在第一象限內(nèi)且與y軸的距離為一個單位,動點P(x,y)沿矩形一邊BC運動,則
y
x
的取值范圍是( 。
A、(-∞,-
1
3
]
B、[
2
3
,+∞)
C、(-∞,-
1
3
]∪[
2
3
,+∞)
D、[
2
3
,
7
5
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex(ax2-2x-2),a∈R且a≠0.
(1)若曲線y=f(x)在點(2,f(2))處的切線與y軸垂直,求a的值;
(2)當(dāng)a>0時,求函數(shù)f(x)在區(qū)間(0,2]上的最小值.

查看答案和解析>>

同步練習(xí)冊答案