3.在∠BAC=θ,中,角A、B、C的對邊分別是a,b,c已知$b=2,c=2\sqrt{2}$,且$C=\frac{π}{4}$,則△ABC的面積為$\sqrt{3}$+1.

分析 由已知利用正弦定理可求sinB,結(jié)合B的范圍,利用特殊角的三角函數(shù)值可求B,利用三角形內(nèi)角和定理可求A,進而利用三角形面積公式即可計算得解.

解答 解:由正弦定理可得:sinB=$\frac{b•sinC}{c}$=$\frac{2×\frac{\sqrt{2}}{2}}{2\sqrt{2}}$=$\frac{1}{2}$,
又c>b,且B∈(0,π),
所以B=$\frac{π}{6}$,
所以A=$\frac{7π}{12}$,
所以S=$\frac{1}{2}$bcsinA=$\frac{1}{2}$×2×2$\sqrt{2}$sin$\frac{7π}{12}$=$\frac{1}{2}$×2×2$\sqrt{2}$×$\frac{\sqrt{6}+\sqrt{2}}{4}$=$\sqrt{3}$+1.
故答案為:$\sqrt{3}$+1.

點評 本題主要考查了正弦定理,特殊角的三角函數(shù)值,三角形內(nèi)角和定理,三角形面積公式在解三角形中的綜合應用,考查了轉(zhuǎn)化思想,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

13.由動點p(x,y)引圓x2+y2=4的兩條切線PA,PB,切點分別為A,B,若∠APB=90°,則點P的軌跡方程為x2+y2=8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知二次函數(shù)f(x)=x2+ax+b,且方程f(x)=17有兩個實根-2,4
(1)求函數(shù)y=f(x)的解析式;
(2)若關于x的不等式f(x)≤λx在區(qū)間[2,4]上恒成立,試求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知橢圓C的方程為$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),兩焦點F1(-1,0)、F2(1,0),點$P(\sqrt{3},\frac{{\sqrt{3}}}{2})$在橢圓C上.
(1)求橢圓C的方程;
(2)如圖,動直線l:y=kx+m與橢圓C有且僅有一個公共點,點M、N是直線l上的兩點,且F1M⊥l,F(xiàn)2N⊥l.求四邊形F1MNF2面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.若a<b<0,則下列不等式不能成立的是( 。
A.|a|>|b|B.a2>abC.$\frac{1}{a}>\frac{1}$D.$\frac{1}{a-b}>\frac{1}{a}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.設f(x)=x3-$\frac{1}{2}{x^2}$-2x+6,當x∈[-1,2]時,求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知雙曲線的標準方程為$\frac{x^2}{3}-{y^2}=1$,直線l:y=kx+m(k≠0,m≠0)與雙曲線交于不同的兩點C、D,若C、D兩點在以點A(0,-1)為圓心的同一個圓上,則實數(shù)m的取值范圍是( 。
A.$\{m|-\frac{1}{4}<m<0\}$B.{m|m>4}C.{m|0<m<4}D.$\{m|-\frac{1}{4}<m<0或m>4\}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.(1)如果$cos(π-x)=\frac{{\sqrt{3}}}{2}$,x∈(0,π],求x的值
(2)已知tanα=2,求2sin2α-3sinαcosα-2cos2α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.觀察下列各式:13=1,13+23=32,13+23+33=62,13+23+33+43=102,…,由此推得:13+23+33…+n3=$\frac{{n}^{2}(n+1)^{2}}{4}$.

查看答案和解析>>

同步練習冊答案