【題目】設函數.
(1)當時,討論函數的單調性;
(2)若使得不等式成立,求實數的取值范圍.
科目:高中數學 來源: 題型:
【題目】
已知函數f(x)=,其中a>0.
(Ⅰ)若a=1,求曲線y=f(x)在點(2,f(2))處的切線方程;
(Ⅱ)若在區(qū)間上,f(x)>0恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設實數,橢圓的右焦點為F,過F且斜率為k的直線交D于P、Q兩點,若線段PQ的中點為N,點O是坐標原點,直線ON交直線于點M.
若點P的橫坐標為1,求點Q的橫坐標;
求證:;
求的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2sinx﹣xcosx﹣x,f'(x)為f(x)的導數.
(1)求曲線在點A(0,f(0))處的切線方程;
(2)設,求在區(qū)間[0,π]上的最大值和最小值。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知是橢圓的兩個焦點,為坐標原點,離心率為,點在橢圓上.
(1)求橢圓的標準方程;
(2)為橢圓上三個動點,在第二象限,關于原點對稱,且,判斷是否存在最小值,若存在,求出該最小值,并求出此時點的坐標,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直三棱柱中,,,已知G與E分別為和的中點,D和F分別為線段AC和AB上的動點(不包括端點),若,則線段DF的長度的平方取值范圍為( ).
A.B.C.D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】關于數列,給出下列命題:①數列滿足,則數列為公比為2的等比數列;②“,的等比中項為”是“”的充分不必要條件:③數列是公比為的等比數列,則其前項和;④等比數列的前項和為,則,,成等比數列,其中假命題的序號是( )
A.②B.②④C.①②④D.①③④
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com