18.已知冪函數(shù)y=f(x)的圖象過點$(\frac{1}{2},\frac{{\sqrt{2}}}{2})$,則$log_2^{f(4)}$=1.

分析 設冪函數(shù)y=f(x)=xα(α為常數(shù)),由圖象過點$(\frac{1}{2},\frac{{\sqrt{2}}}{2})$,則$\frac{\sqrt{2}}{2}=(\frac{1}{2})^{α}$,解得α,再利用對數(shù)的運算性質即可得出.

解答 解:設冪函數(shù)y=f(x)=xα(α為常數(shù)),由圖象過點$(\frac{1}{2},\frac{{\sqrt{2}}}{2})$,則$\frac{\sqrt{2}}{2}=(\frac{1}{2})^{α}$,解得α=$\frac{1}{2}$.
∴f(x)=$\sqrt{x}$,∴f(4)=2.
$log_2^{f(4)}$=log22=1.
故答案為:1.

點評 本題考查了冪函數(shù)的定義、對數(shù)函數(shù)的運算性質,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

6.函數(shù)y=sinx•cosx,x∈R的最小正周期為( 。
A.2B.πC.D.$\frac{1}{π}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.《中華人民共和國道路交通安全法》規(guī)定:車輛駕駛員血液酒精濃度在20一80  mg/l00mL(不含80)之間,屬于酒后駕車;血液酒精濃度在80mg/l00mL(含80)以上時,屬醉酒駕車.據(jù)有關調(diào)查,在一周內(nèi),某地區(qū)查處酒后駕車和醉酒駕車共300人.如圖是對這300人血液中酒精含量進行檢測所得結果的頻率分布直方圖,則屬于醉酒駕車的人數(shù)約為( 。
A.50B.45C.25D.15

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.方程log2(x+2)=$\sqrt{-x}$的實數(shù)解的個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=a(x2-1)-lnx.
(1)若y=f(x)在x=2處取得極小值,求a的值;
(2)若f(x)≥0在[1,+∞)上恒成立,求a的取值范圍;
(3)求證:當n≥2時,$\frac{1}{ln2}+\frac{1}{ln3}+…+\frac{1}{lnn}>\frac{{3{n^2}-n-2}}{{2{n^2}+2n}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知$sin(2π-α)=\frac{3}{5}\;,\;α∈(\frac{3}{2}π\(zhòng);,\;2π)$,則$\frac{sinα+cosα}{sinα-cosα}$=-$\frac{1}{7}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.下列函數(shù)能用二分法求零點的是( 。
A.f(x)=x2B.f(x)=$\sqrt{-{x^2}+1}$C.f(x)=ln(x+2)2D.f(x)=$\frac{1}{{|{{2^x}-3}|}}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.下面四個推理,不屬于演繹推理的是( 。
A.因為函數(shù)y=sinx(x∈R)的值域為[-1,1],2x-1∈R,所以y=sin(2x-1)(x∈R)的值域也為[-1,1]
B.昆蟲都是6條腿,竹節(jié)蟲是昆蟲,所以竹節(jié)蟲有6條腿
C.在平面中,對于三條不同的直線a,b,c,若a∥b,b∥c則a∥c,將此結論放到空間中也是如此
D.如果一個人在墻上寫字的位置與他的視線平行,那么,墻上字跡離地的高度大約是他的身高,兇手在墻上寫字的位置與他的視線平行,福爾摩斯量得墻壁上的字跡距地面六尺多,于是,他得出了兇手身高六尺多的結論

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖,在五棱錐F-ABCDE中,平面AEF⊥平面ABCDE,AF=EF=1,AB=DE=2,BC=CD=3,且∠AFE=∠ABC=∠BCD=∠CDE=90°.
(1)已知點G在線段FD上,確定G的位置,使得AG∥平面BCF;
(2)點M,N分別在線段DE,BC上,若沿直線MN將四邊形MNCD向上翻折,D與F恰好重合,求三棱錐A-BMF的體積.

查看答案和解析>>

同步練習冊答案