13.若集合M={x|2x+1>0},N={x|x+2>x2},則M∩N=(  )
A.{x|$\frac{1}{2}$<x<2}B.{x|$\frac{1}{2}$<x<1}C.{x|-$\frac{1}{2}$<x<1}D.{x|-$\frac{1}{2}$<x<2}

分析 先化簡集合M、N,再求M∩N.

解答 解:集合M={x|2x+1>0}={x|x>-$\frac{1}{2}$},
N={x|x+2>x2}={x|-1<x<2},
∴M∩N={x|-$\frac{1}{2}$<x<2}.
故選:D.

點(diǎn)評 本題考查了集合的化簡與運(yùn)算問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.同時(shí)拋擲3枚硬幣,三枚出現(xiàn)相同一面的概率為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某中學(xué)進(jìn)行教學(xué)改革試點(diǎn),推行“高效課堂”的教學(xué)方法,為了提高教學(xué)效果,某數(shù)學(xué)教師在甲乙兩個(gè)平行班進(jìn)行教學(xué)實(shí)驗(yàn),甲班采用傳統(tǒng)教學(xué)方式,乙班采用“高效課堂”教學(xué)方式.為了了解教學(xué)效果,期中考試后,分別從兩個(gè)班級中各隨機(jī)抽取20名學(xué)生的成績進(jìn)行統(tǒng)計(jì),作出的莖葉圖如圖:記成績不低于70分者為“成績優(yōu)良”
(1)分別計(jì)算甲乙兩班20個(gè)樣本中,數(shù)學(xué)分?jǐn)?shù)前十的平均分,并大致判斷哪種教學(xué)方式的教學(xué)效果更佳;
(2)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面2×2列聯(lián)表,并判斷“成績優(yōu)良”與教學(xué)方式是否有關(guān).
 甲班乙班總計(jì)
成績優(yōu)良   
成績不優(yōu)良   
總計(jì)   
附:Χ2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}•{n}_{2+}•{n}_{+1}•{n}_{+2}}$
獨(dú)立性檢驗(yàn)臨界值表:
P(Χ2≤k)0.100.050.0250.010
k2.7063.8415.0246.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)y=xa為偶函數(shù)且為減函數(shù)在(0,+∞)上,則a的范圍為a<0且a為偶數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.某品牌洗衣機(jī)專賣店在國慶期間舉行了八天的促銷活動,每天的銷量(單位:臺)如莖葉圖所示,則銷售量的中位數(shù)是15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列說法錯(cuò)誤的是(  )
A.若a,b∈R,且a+b>4,則a,b至少有一個(gè)大于2
B.若p是q的充分不必要條件,則¬p是¬q的必要不充分條件
C.若命題p:“$\frac{1}{x-1}$>0”,則¬p:“$\frac{1}{x-1}$≤0”
D.△ABC中,A是最大角,則sin2A>sin2B+sin2C是△ABC為鈍角三角形的充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若$\frac{π}{4}$<α≤β≤$\frac{π}{3}$,則2α-β的取值范圍是($\frac{π}{6}$,$\frac{5π}{12}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.從0,1,2,3,5,7這六個(gè)數(shù)字中,任取出兩個(gè)不同的數(shù)字作為直線Ax+By=0的系數(shù)A,B,則可以得到不同的直線條數(shù)為( 。
A.22條B.30條C.12條D.20條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知a∈R,函數(shù)f(x)=log2($\frac{1}{x}$+a).
(1)當(dāng)a=1時(shí),解不等式f(x)>1;
(2)若關(guān)于x的方程f(x)+log2(x2)=0的解集中恰有一個(gè)元素,求a的值;
(3)設(shè)a>0,若對任意t∈[$\frac{1}{2}$,1],函數(shù)f(x)在區(qū)間[t,t+1]上的最大值與最小值的差不超過1,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案