1.函數(shù)y=xa為偶函數(shù)且為減函數(shù)在(0,+∞)上,則a的范圍為a<0且a為偶數(shù).

分析 根據(jù)減函數(shù)以及偶函數(shù)的性質(zhì)結(jié)合冪函數(shù)的定義求出a的范圍即可.

解答 解:∵函數(shù)為減函數(shù),
∴a<0,
∵函數(shù)為偶函數(shù),
∴a為偶數(shù),
故答案為:a<0且a為偶數(shù).

點評 本題考查偶函數(shù)的定義,冪函數(shù)定義,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=Asin(ωx+φ)的圖象如圖所示,則∫${\;}_{\frac{π}{3}}^{π}$f(x)dx的值為(  )
A.2-$\sqrt{3}$B.$\frac{1}{2}$C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知向量$\overrightarrow a,\overrightarrow b$滿足|$\overrightarrow a$|=|$\overrightarrow b$|=$\overrightarrow a$•$\overrightarrow b$=2且($\overrightarrow a$-$\overrightarrow c$)•($\overrightarrow b$-$\overrightarrow c$)=0,則|2$\overrightarrow b$-$\overrightarrow c$|的最大值為$\sqrt{7}$+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某教師一天上3個班級的課,每班一節(jié),如果一天共8節(jié)課,上午5節(jié)、下午3節(jié),并且教師不能連上3節(jié)課(第5和第6節(jié)不算連上),那么這位教師一天的課的所有排法有(  )
A.474種B.312種C.462種D.300種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.二次函數(shù)f(x)=x2+x,當(dāng)x∈[n,n+1](n∈N*)時,f(x)函數(shù)值中所有整數(shù)值的個數(shù)為g(n),an=$\frac{{2{n^3}+3{n^2}}}{g(n)}$(n∈N*),求Sn=a1-a2+a3-a4+…+(-1)n-1an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知x,y滿足約束條件$\left\{\begin{array}{l}{x-y-1≥0}\\{3x-y+1≤0}\end{array}\right.$且目標(biāo)函數(shù)z=ax-by(a>0,b<0)的最大值為-4,則$\frac{b-1}{a+1}$的取值范圍是( 。
A.(-∞,-$\frac{1}{3}$)∪(-5,+∞)B.(-5,-$\frac{1}{3}$)C.(-∞,-3)∪(-$\frac{1}{5}$,+∞)D.(-3,-$\frac{1}{5}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若集合M={x|2x+1>0},N={x|x+2>x2},則M∩N=( 。
A.{x|$\frac{1}{2}$<x<2}B.{x|$\frac{1}{2}$<x<1}C.{x|-$\frac{1}{2}$<x<1}D.{x|-$\frac{1}{2}$<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列敘述中,正確的個數(shù)是( 。
①命題p:“?x0∈R,x${\;}_{0}^{2}$-2≥0”的否定為¬p:“?x∈R,x2-2<0”;
②“M>N”是“($\frac{2}{3}$)M>($\frac{2}{3}$)N”的充分不必要條件;
③命題“若x2-3x-4=0,則x=4”的逆否命題為“若x≠4,則x2-3x-4≠0”
④若p∨q為假命題,則¬p為真命題.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.一個口袋中有五張大小,形狀完全相同的卡片,上面分別標(biāo)有數(shù)字1,2,3,4,5,先從中任意抽出一張作為十位上的數(shù)字(不放回),再從中抽出一張作為個位上的數(shù)字.
(1)試問:一共有多少種不同的結(jié)果?請列出所有可能的結(jié)果;
(2)求抽到的兩位數(shù)是偶數(shù)的概率.

查看答案和解析>>

同步練習(xí)冊答案