14.?dāng)?shù)列{an}滿足a1=$\frac{1}{2}$,an+1=an+$\frac{{{a}_{n}}^{2}}{2016}$;
(1)令bn=$\frac{1}{{a}_{n}+2016}$,Sn是數(shù)列{bn}的前n項(xiàng)和,求$\frac{{S}_{n}{a}_{n+1}+1}{{a}_{n+1}}$的值
(2)是否存在k∈N+,使得ak<1<ak+1,若存在,求出所有滿足條件的k值;若不存在,請說明理由.

分析 (1)由題意可得bn=$\frac{1}{{a}_{n}+2016}$=$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n+1}}$,運(yùn)用數(shù)列的求和方法:裂項(xiàng)相消求和,化簡整理即可得到所求值;
(2)假設(shè)存在k∈N+,使得ak<1<ak+1,再由不等式的性質(zhì)和等比數(shù)列的求和公式,計(jì)算即可得到結(jié)論.

解答 解:(1)a1=$\frac{1}{2}$,an+1=an+$\frac{{{a}_{n}}^{2}}{2016}$,
可得bn=$\frac{1}{{a}_{n}+2016}$=$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n+1}}$,
可得Sn=$\frac{1}{{a}_{1}}$-$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{2}}$-$\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n+1}}$
=$\frac{1}{{a}_{1}}$-$\frac{1}{{a}_{n+1}}$,
則$\frac{{S}_{n}{a}_{n+1}+1}{{a}_{n+1}}$=Sn+$\frac{1}{{a}_{n+1}}$=$\frac{1}{{a}_{1}}$-$\frac{1}{{a}_{n+1}}$+$\frac{1}{{a}_{n+1}}$=$\frac{1}{{a}_{1}}$=2;
(2)假設(shè)存在k∈N+,使得ak<1<ak+1,
由ak+1=ak+$\frac{{{a}_{k}}^{2}}{2016}$>1,解得ak>$\frac{\sqrt{2016×2020}-2016}{2}$,
可得$\frac{\sqrt{2016×2020}-2016}{2}$<ak<1成立,
但a1=$\frac{1}{2}$,a2=a1+$\frac{{{a}_{1}}^{2}}{2016}$<a1+a12=$\frac{1}{2}$+$\frac{1}{4}$,
…,an<$\frac{1}{2}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{n}}$=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$<1,
故不存在k∈N+,使得ak<1<ak+1

點(diǎn)評 本題考查數(shù)列的求和方法:裂項(xiàng)相消求和,考查存在性問題的解法,注意運(yùn)用不等式的性質(zhì)和等比數(shù)列的求和公式,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)直線l1:ax+4y-2=0與l2:x+ay-b=0平行,求實(shí)數(shù)a與b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.從6名男醫(yī)生和3名女醫(yī)生中選出5人組成一個(gè)醫(yī)療小組,這個(gè)小組中男女醫(yī)生都有的概率是$\frac{60}{63}$(結(jié)果用數(shù)值表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.(x+2)(x-$\frac{1}{x}$)6的展開式中,常數(shù)項(xiàng)是-40(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)的定義域?yàn)閇-1,5],部分對應(yīng)值如表,f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示.
 x-1 4
 f(x) 2 1
下列關(guān)于函數(shù)f(x)的命題:
①函數(shù)y=f(x)是周期函數(shù);
②函數(shù)f(x)在[0,2]上是減函數(shù);
③如果當(dāng)x∈[-1,t]時(shí),f(x)的最大值是2,那么t的最大值為5;
④當(dāng)1<a<2時(shí),函數(shù)y=f(x)-a有4個(gè)零點(diǎn).
其中所有真命題的序號為②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.等差數(shù)列{an}的首項(xiàng)a1=1,公差d≠0,且a3•a4=a12
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=an•2n,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若集合A={x|1<x2<5x},B={y|y=3-x,x∈A},則A∪B等于( 。
A.(1,2)B.(-2,2)C.(-1,5)D.(-2,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知a,b,c分別為△ABC內(nèi)角A,B,C的對邊,sin2B=2sinAsinC,且a>c,cosB=$\frac{1}{4}$,則$\frac{a}{c}$=( 。
A.2B.$\frac{1}{2}$C.3D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.甲、乙兩市都位于長江下游,根據(jù)一百多年來的氣象記錄,知道一年中下雨天的比例甲市占20%,乙市占18%,兩地同時(shí)下雨占12%,記P(A)=0.20,P(B)=0.18,P(AB)=0.12,則P(A|B)=$\frac{2}{3}$,P(B|A)=$\frac{3}{5}$.

查看答案和解析>>

同步練習(xí)冊答案