18.若數(shù)列{an}是首項為2,公比為4的等比數(shù)列,設bn=log2an,Tn為數(shù)列{bn}的前n項和.則T100=10000.

分析 根據(jù)等比數(shù)列的通項公式得出an,計算bn得出{bn}為等差數(shù)列,代入求和公式計算.

解答 解:an=2•4n-1=22n-1,∴bn=log222n-1=2n-1,
∴{bn}是以1為首項,以2為公差的等差數(shù)列,
∴T100=100+$\frac{100×99}{2}×2$=10000.
故答案為:10000.

點評 本題考查了等差數(shù)列,等比數(shù)列的性質(zhì)及判斷,求和公式的應用,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

8.一點沿直線運動,如果由起點起經(jīng)過t秒后的距離$s=\frac{1}{3}{t^3}-\frac{1}{2}{t^2}-2t+1$,那么速度為零的時刻是( 。
A.1秒末B.2秒末C.3秒末D.4秒末

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知平面內(nèi)一動點P到點F(1,0)的距離與點P到y(tǒng)軸的距離的差等于1.則動點P的軌跡方程為y2=4x(x≥0)或y=0(x<0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知集合A={x|a-1<x<2a+1},B={x|0<x<1}.
(Ⅰ)若0<a<1,求A∩B;
(Ⅱ)若A∩B=∅,求實數(shù)a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.證明:函數(shù)f(x)=x2+1在(1,3)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,已知正四棱柱ABCD-A1B1C1D1中,2AB=BB1,過點B作B1C的垂線交側(cè)棱CC1于點E.
(1)求證:面A1CB⊥平面BED;
(2)若AB=1,求點C到平面BDE的距離;
(3)取BB1的中點F,求D1E與C1F所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖,在四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.
(1)求證:PB∥平面AEC;
(2)設PA=1,AB=$\sqrt{3}$,AD=2,求三棱錐B-PCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知f(x)是奇函數(shù),當x<0時,f(x)=x3+x2,則f(2)=( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知命題p:$\frac{{x}^{2}}{m+2}$-$\frac{{y}^{2}}{m-3}$=1表示的曲線為雙曲線:命題q:方程mx2+(m+3)x+4=0無正實根.若p∨q為真命題,p∧q為假命題,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案