2.已知$\overrightarrow{a}$=(-3,2,5),$\overrightarrow$=(1,x,-1),若$\overrightarrow{a}$⊥$\overrightarrow$,則x=4.

分析 由題意可得$\overrightarrow{a}$•$\overrightarrow$=-8-2+3x=0,由此解得 x的值.

解答 解:∵$\overrightarrow{a}$=(-3,2,5),$\overrightarrow$=(1,x,-1),$\overrightarrow{a}$⊥$\overrightarrow$,
∴$\overrightarrow{a}$•$\overrightarrow$=0,即-3+2x-5=0,
解得:x=4,
故答案為:4.

點(diǎn)評 本題主要考查兩個(gè)向量垂直的性質(zhì),兩個(gè)向量坐標(biāo)形式的運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=ax2+bx+c(a≠0)的圖象過點(diǎn)(-1,0).是否存在常數(shù)a,b,c,使不等式x≤f(x)≤$\frac{1+x^2}{2}$,對?x∈R都成立?若存在,求出a,b,c的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.PM2.5是指空氣中直徑小于或等于2.5微米的顆粒物,為了探究車流輛與PM2.5的濃度是否相關(guān),現(xiàn)采集到某城市周一至周五某一時(shí)間段車流量與PM2.5的濃度的數(shù)據(jù)如下表:
時(shí)間周一周二周三周四周五
車流量x(萬輛)100102108114116
PM2.5的濃度y(微克/立方米)7880848890
(Ⅰ)根據(jù)上表數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;
(Ⅱ)若周六同一時(shí)間段車流量是200萬輛,試根據(jù)(Ⅰ)中求出的線性回歸方程預(yù)測,此時(shí)PM2.5的濃度是多少?
附:線性回歸方程$\hat y=\hat bx+\hat a$中系數(shù)計(jì)算公式:$\hat b=\frac{{\sum_{i=1}^n{(\;{x_i}-\overline x\;)(\;{y_i}-\overline y\;)}}}{{\sum_{i=1}^n{{{(\;{x_i}-\overline x\;)}^2}}}}$,$\hat a=\overline y-\hat b\;\overline x$,其中$\overline x$、$\overline y$表示樣本均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.若數(shù)列{An}滿足An+1=An2,則稱數(shù)列{An}為“平方遞推數(shù)列”.已知數(shù)列{an}中,a1=9,且an+1=a${\;}_{n}^{2}$+2an,其中n為正整數(shù).
(Ⅰ)證明數(shù)列{an+1}是“平方遞推數(shù)列”,且數(shù)列{lg(an+1)}為等比數(shù)列.
(Ⅱ)設(shè)(Ⅰ)中“平方遞推數(shù)列”的前n項(xiàng)之積為Tn,即Tn=(a1+1)(a2+1)…(an+1),求lgTn
(Ⅲ)在(2)的條件下,記bn=$\frac{lg{T}_{n}}{lg({a}_{n}+1)}$,求數(shù)列{bn}的前n項(xiàng)和Sn,并求使Sn>4030的n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知數(shù)列{an}的前n項(xiàng)和為Sn,且an=$\frac{n•{2}^{n}-{2}^{n+1}}{(n+1)({n}^{2}+2n)}$(n∈N+),則Sn=$\frac{{2}^{n+1}}{(n+1)(n+2)}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,四棱錐P-ABCD,底面ABCD是∠ABC=60°的菱形,側(cè)面PAD是邊長為2的正三角形,且與底面ABCD垂直,M為PC的中點(diǎn).
(I)求證:PC⊥AD;
(Ⅱ)求直線DM與平面PAC所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知拋物線C:y2=4x,過拋物線C的焦點(diǎn)F的直線l0與C交于A,B(A在x軸上方)兩點(diǎn),且|AF|=3|BF|,則△OAB(O為坐標(biāo)原點(diǎn))的面積為( 。
A.$\frac{4\sqrt{3}}{3}$B.$\sqrt{2}$C.$\sqrt{3}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知實(shí)數(shù)a,b滿足關(guān)系a2=b2-b+1,則下列結(jié)論正確的是( 。
A.若a<1,b<$\frac{1}{2}$,則a>bB.若a<1,b<$\frac{1}{2}$,則a<b
C.若a>1,b>$\frac{1}{2}$,則a>bD.若a>1,b>$\frac{1}{2}$,則a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知全集U=R,集合A={x|y=log2(x-1)},B={y|y=2x},則B∩(∁UA)為( 。
A.(0,+∞)B.[1,+∞)C.(0,1]D.(1,2)

查看答案和解析>>

同步練習(xí)冊答案