5.(1)有8個人并排站成一排,如果甲必須在乙的左邊,乙必須在丙的右邊,則不同的排法有多少種?
(2)現(xiàn)有10個畢業(yè)生實習(xí)名額,分配給7所大學(xué),每所學(xué)校至少有一個名額,則分配的方法共有多少種?

分析 (1)順序給定,利用除法進(jìn)行計算;
(2)每個學(xué)校至少一個名額,則分去7個,剩余3個名額分到7所學(xué)校的方法種數(shù)就是要求的分配方法種數(shù),分類討論,可得結(jié)論.

解答 解:(1)8個人并排站成一排,有${A}_{8}^{8}$種方法,甲乙丙的順序有${A}_{3}^{3}$種方法,所以甲必須在乙的左邊,乙必須在丙的右邊,有$\frac{{A}_{8}^{8}}{{A}_{3}^{3}}×2$=13440;
(2)每個學(xué)校至少一個名額,則分去7個,剩余3個名額分到7所學(xué)校的方法種數(shù)就是要求的分配方法種數(shù).
分類:若3個名額分到一所學(xué)校有7種方法;
若分配到2所學(xué)校有${C}_{7}^{2}$×2=42(種);
若分配到3所學(xué)校有${C}_{7}^{3}$=35(種).
∴共有7+42+35=84(種)方法.

點評 本題考查排列組合知識的運用,考查分類討論的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)y=a|logax|(a>1)的圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知z1=1+i,z2=(m-1)+(n-2)i,且z1=z2,則m+n=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知點P(x0,y0)是拋物線y=3x2上一點,且y′|${\;}_{x={x}_{0}}$=6,則點P的坐標(biāo)為(  )
A.(1,3)B.(-1,3)C.(3,1)D.(-3,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.按某種規(guī)定,一個50人的樣本頻率分布直方圖如圖.第一組的頻率面積為0.04,若前三組的頻率與后三組的頻率各自構(gòu)成等差數(shù)列,且公差為相反數(shù).
(1)求第三組的人數(shù);
(2)若從50人中隨機選出兩人做代表,這兩人分別來自第三組和第四組的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,已知四邊形ABCD內(nèi)接于圓,延長AB和DC相交于E,EG平分∠E,且與BC,AD分別相交于F,G.證明:
(Ⅰ)△EAG∽△ECF;
(Ⅱ)∠CFG=∠DGF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.求y=$\sqrt{{x}^{2}+x+1}$+$\sqrt{{x}^{2}-x+1}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{x^2}-2(x≥2)\\ 2x(x<2)\end{array}\right.$,若f(a)>a,則實數(shù)a的取值范圍是a>2或0<a<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)A(x1,y1),B(x2,y2)是拋物線y2=2px(p>0)上的不同兩點,則“y1y2=-p2”是“弦AB過焦點”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.不充分不必要條件

查看答案和解析>>

同步練習(xí)冊答案