10.?dāng)?shù)列{an}中,${a_1}=-\frac{4}{3}$,${a_{n+2}}=\frac{1}{{{a_n}+1}}$,則a7=2.

分析 利用遞推公式即可得出.

解答 解:∵${a_1}=-\frac{4}{3}$,${a_{n+2}}=\frac{1}{{{a_n}+1}}$,
∴a3=$\frac{1}{-\frac{4}{3}+1}$=-3,a5=$\frac{1}{-3+1}$=-$\frac{1}{2}$.
則a7=$\frac{1}{-\frac{1}{2}+1}$=2.
故答案為:2.

點評 本題考查了數(shù)列遞推關(guān)系,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.把一個半徑為R的實心鐵球熔化鑄成兩個小球(不計損耗),兩個小球的半徑之比為1:2,則其中較小球半徑為(  )
A.$\frac{1}{3}$RB.$\frac{\root{3}{3}}{3}$RC.$\frac{\root{3}{25}}{5}$RD.$\frac{\sqrt{3}}{3}$R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.列車從A地出發(fā)直達(dá)500km外的B地,途中要經(jīng)過離A地300km的C地,假設(shè)列車勻速前進(jìn),5h后從A地到達(dá)B地,則列車與C地距離y(單位:km)與行駛時間t(單位:h)的函數(shù)圖象為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知直線l與圓C:x2+y2+2x-4y+a=0相交于A、B兩點,弦AB的中點為M(0,1).
(1)求實數(shù)a的取值范圍以及直線l的方程;
(2)若圓C上存在動點N使CN=2MN成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.如圖,在棱長為1的正方體ABCD-A1B1C1D1中,B1C與BD所成的角為60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.求函數(shù)$y=\frac{1}{2}sin(\frac{2}{3}x-\frac{π}{4})$的最大值和最小值及取得最大值最小值時x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)$f(x)={(cosx+sinx)^2}-2sinxcos(\frac{π}{2}-x)$
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)求函數(shù)f(x)的最大值及f(x)取最大值時x的集合;
(Ⅲ)求函數(shù)f(x)單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知直三棱柱ABC-A1B1C1中,D,E分別為AA1,CC1的中點,AC⊥BE,點F在線段AB上,且AB=4AF.
(1)證明:BC⊥C1D;
(2)若M為線段BE上一點,試確定M在線段BE上的位置,使得C1D∥平面B1FM.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列說法正確的是( 。
A.“若$\overrightarrow a•\overrightarrow b=0$,則$\overrightarrow a⊥\overrightarrow b$”的否命題是“若$\overrightarrow a•\overrightarrow b≠0$,則$\overrightarrow a⊥\overrightarrow b$”
B.命題“對?x∈R,恒有x2+1>0”的否定是“?x0∈R,使得$x_0^2+1≤0$”
C.?m∈R,使函數(shù)f(x)=x2+mx(x∈R)是奇函數(shù)
D.設(shè)p,q是簡單命題,若p∨q是真命題,則p∧q也是真命題

查看答案和解析>>

同步練習(xí)冊答案