已知f(x)始終滿足f(x+2)=-f(x),則f(x)的周期為
 
考點(diǎn):函數(shù)的周期性
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:本題通過函數(shù)解析式的條件f(x+2)=-f(x),利用迭代思想,得到f(x+4)=-f(x+2),符合周期函數(shù)的定義f(x+4)=f(x),故得到答案周期為4.
解答: 解:∵函數(shù)f(x)滿足f(x+2)=-f(x),
∴f(x+4)=-f(x+2),
∴f(x+4)=f(x),
∴函數(shù)f(x)的周期為4.
故答案為:4.
點(diǎn)評:本題考查了函數(shù)周期性的定義,本題難度不大,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,AB=AC=3,∠BAC=30°,CD是邊AB上的高,則
CD
CB
=( 。
A、-
9
4
B、
9
4
C、
27
4
D、-
27
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正項(xiàng)等差數(shù)列{an}的前n項(xiàng)和為Sn且滿足a1+a5=
2
7
a
2
3
,S7
=63.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式an;
(Ⅱ)若數(shù)列{bn}滿足b1=a1且bn+1-bn=an+1,求數(shù)列{
1
bn
}
的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

12
-(π-3)0+(
1
3
- 
1
2
-tan60°=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,角A,B,C的對邊分別為a,b,c,且b2=a2+c2-ac.
(1)求角B;
(2)若a,b,c成等比數(shù)列,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2sin(2x+
π
3
).則f(
π
6
)=
 
;若f(x)=-2,則滿足條件的x的集合為
 
;則f(x)的其中一個(gè)對稱中心為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三棱錐P-ABC中,底面ABC是邊長為2的正三角形,PA⊥平面ABC,D,E分別為BC,AC的中點(diǎn),F(xiàn)是CD的中點(diǎn).
(1)求證:AD∥平面PEF;
(2)求證:平面PBE⊥平面PAC;
(3)若二面角P-BC-A為45°,求直線PB與平面PEF所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}為等比數(shù)列,a5=1,a9=81,則a7=( 。
A、9或-9B、9
C、27或-27D、-27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知l1,l2是分別經(jīng)過A(2,1),B(0,2)兩點(diǎn)的兩條平行直線,當(dāng)l1,l2之間的距離最大時(shí),直線l1的方程是
 

查看答案和解析>>

同步練習(xí)冊答案