已知f(x)=
ax
(4-
a
2
)x+2
(x>1)
(x≤1)
是R上的單調(diào)增函數(shù),則實(shí)數(shù)a的取值范圍為
 
考點(diǎn):函數(shù)單調(diào)性的性質(zhì)
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用,不等式的解法及應(yīng)用
分析:運(yùn)用指數(shù)函數(shù)和一次函數(shù)的單調(diào)性,結(jié)合R上的單調(diào)增函數(shù),可得a>1且4-
a
2
>0且a≥4-
a
2
+2,分別解出它們,再求交集即可.
解答: 解:由f(x)是R上的單調(diào)增函數(shù),
則當(dāng)x>1時,由指數(shù)函數(shù)的單調(diào)性可得a>1,
當(dāng)x≤1時,由一次函數(shù)的單調(diào)性可得4-
a
2
>0,
可得a<8,
再由R上遞增,則a≥4-
a
2
+2,
解得a≥4,
綜上可得,4≤a<8.
故答案為:[4,8).
點(diǎn)評:本題考查函數(shù)的單調(diào)性的運(yùn)用:求參數(shù)范圍,考查指數(shù)函數(shù)和一次函數(shù)的單調(diào)性,考查運(yùn)算能力,屬于中檔題和易錯題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x+1
x
,證明函數(shù)f(x)在(-∞,0)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)圓C的半徑為1,圓心在l:y=
3
x(x≥0)上,若圓C與圓x2+y2=4相交,則圓心C的橫坐標(biāo)的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

銳角△ABC中,a,b,c分別是角A,B,C的對邊,
3
acosA=bsin2A.
(1)求角B的大。
(2)若a+c=9,△ABC的面積為
15
3
4
,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)(x,y)在△ABC所包圍的區(qū)域內(nèi)(包含邊界),若B(3,
5
2
)是使得z=ax-y取得最大值的最優(yōu)解,則實(shí)數(shù)a的取值范圍為( 。
A、a≥-
1
2
B、a>0
C、a≤-
1
2
D、-
1
2
≤a≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程(x-y-3)(x+y)=0所表示的圖形是(  )
A、兩條互相平行的直線
B、兩條互相垂直的直線
C、一個點(diǎn)(
3
2
,-
3
2
D、過點(diǎn)(
3
2
,-
3
2
)的無數(shù)條直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

利用“五點(diǎn)法”換函數(shù)f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<
π
2
)的圖象時,先列表(部分?jǐn)?shù)據(jù))如下:
ωx+φ0  π  2π
x 
π
3
 
6
 
3
 
11π
6
 
3
y 4 -2 
(1)根據(jù)表格提供的份額數(shù)據(jù)求函數(shù)f(x)的解析式以及單調(diào)遞增區(qū)間;
(2)若當(dāng)x∈[0,
6
]時,方程f(x)=m+1恰有兩個不同的解,求實(shí)數(shù)m的取值范圍,并求這兩個解的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個圓和直線l:x+2y-3=0相切于點(diǎn)P(1,1),且半徑為5,求這個圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)有兩個命題,其中命題P:關(guān)于x的不等式|x+2|+|x-2|≥a對一切實(shí)數(shù)x恒成立.命題Q:函數(shù)y=-(5-2a)x在R上時減函數(shù).如命題P和Q都是真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案