分析 (1)由正弦定理及三角函數(shù)恒等變換的應用化簡已知可得:-2sinAcosB=sinA,結(jié)合sinA≠0,可求cosB,結(jié)合B的范圍可求B的值.
(2)由三角形面積公式可求c,進而由余弦定理解得ac的值,利用三角形面積公式即可得解.
解答 (本小題滿分12分)
解:(1)由正弦定理及$\frac{cosB}{cosC}=-\frac{2a+c}$得:$\frac{cosB}{cosC}=-\frac{sinB}{2sinA+sinC}$,
∴cosB(2sinA+sinC)=-sinBcosC,
∴2sinAcosB+cosBsinC=-sinBcosC,
∴-2sinAcosB=sin(B+C)=sinA,
∵sinA≠0,
∴$cosB=-\frac{1}{2}$,
∵0<B<π,
∴$B=\frac{2π}{3}$,
(2)由$a=2,B=\frac{2π}{3},S=\frac{1}{2}acsinB=\sqrt{3}$,解得:c=2,
由余弦定理得:b2=a2+c2-2accosB,①
將,a=2,c=2,$B=\frac{2π}{3}$代入①,得$13=16-2ac(1-\frac{1}{2})$,
解得:ac=3,
可得:${S_{△ABC}}=\frac{1}{2}acsinB=\frac{{3\sqrt{3}}}{4}$.
點評 本題主要考查了正弦定理,三角函數(shù)恒等變換的應用,三角形面積公式,余弦定理在解三角形中的應用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{45}{4}$ | B. | 6 | C. | $\frac{45}{8}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | p∧q | B. | p∧(¬q) | C. | (¬p)∧q | D. | ¬p∨q |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-$\frac{2\sqrt{3}}{3}$,$\frac{2\sqrt{3}}{3}$) | B. | (-∞,-1)∪(0,+∞) | C. | (-$\frac{2\sqrt{3}}{3}$,0) | D. | (-$\frac{2\sqrt{3}}{3}$,-1)∪({0,$\frac{2\sqrt{3}}{3}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 最大值是$\sqrt{2}$,周期是π | B. | 最小值是-2,周期是2π | ||
C. | 最大值是$\sqrt{2}$,周期是2π | D. | 最小值是-2,周期是π |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com