9.如圖,在直四棱柱ABCD-A1B1C1D1中,底面ABCD為等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E、E1分別是棱AD、AA1的中點,F(xiàn)是AB的中點.
(1)證明:直線EE1∥平面FCC1;
(2)求異面直線EE1和C1F所成的角.

分析 (1)證明平面FCC1∥平面ADD1A1,從而得出EE1∥平面FCC1;
(2)連接AD1交A1D于點O,則可證明AD1∥FC1,EE1∥A1D,故而∠A1OA即為所求角.

解答 證明(1)∵梯形ABCD為等腰梯形,F(xiàn)為AB的中點,
∴四邊形AFCD為平行四邊形,∴AD∥CF,
又∵AD?平面ADD1A,∴FC∥平面ADD1A,
∵CC1∥DD1且 DD1?ADD1A1,∴CC1∥平面ADD1A,
又∵CC1∩FC=C且CC1?平面CC1F,F(xiàn)C?平面CC1F,
∴平面CC1F∥平面A1ADD1
又∵EE1?A1ADD1,
∴EE1∥平面FCC1
(2)連接AD1,A1D,兩直線交于點O.
∵D1C1與AF平行且相等,∴D1AFC1為平行四邊形  D1A∥FC1
又∵E1E為三角形A1AD的中位線∴EE1∥A1D
則角A1OA為所求異面直線的夾角.
∵DD1⊥AD,AD=DD1=2,
四邊形A1ADD1為正方形,
則∠A1OA=90°,
∴EE1與C1F所成的角為90°.

點評 本題考查了線面平行的判定定理,異面直線所成的角,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

19.圓x2+y2+4x-2y-1=0關(guān)于坐標原點對稱的圓的方程是( 。
A.(x+2)2+(y-1)2=6B.(x-2)2+(y-1)2=6C.(x-2)2+(y+1)2=6D.(x+2)2+(y+1)2=6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知集合A={x|ax2-3x-4=0,x∈R}.
(1)若A中有兩個元素,求實數(shù)a的取值范圍;
(2)若A中至多有一個元素,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.設(shè)函數(shù)y=f(x)的圖象與函數(shù)y=2x+a的圖象關(guān)于直線y=-x對稱,且f(-4)+f(-8)=1,則a=3 .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.在△ABC中,a=5,c=2,S△ABC=4,則b=$\sqrt{17}$或$\sqrt{41}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.某校高三文科500名學生參加了1月份的模擬考試,學校為了了解高三文科學生的數(shù)學、語文情況,利用隨機數(shù)表法從中抽取100名學生的成績進行統(tǒng)計分析,抽出的100名學生的數(shù)學、語文成績?nèi)绫恚?br />
  語文
 
優(yōu)
 良 及格
 數(shù)學 優(yōu) 8 m 9
 良 9 n 11
 及格 8 9 11
(1)將學生編號為:001,002,003,…499,500,若從第5行第5列的數(shù)開始右讀,請你依次寫出最先抽出的 5個人的編號(下面是摘自隨機用表的第四行至第七行)

(2)若數(shù)學優(yōu)秀率為35%,求m,n的值;
(3)在語文成績?yōu)榱嫉膶W生中,已知m≥13,n≥11,求數(shù)學成績“優(yōu)”與“良”的人數(shù)少的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.設(shè)點P,Q分別是曲線y=xe-x(e是自然對數(shù)的底數(shù))和直線y=x+3上的動點,則P,Q兩點間距離的最小值為( 。
A.$\frac{(4e-1)\sqrt{2}}{2}$B.$\frac{(4e+1)\sqrt{2}}{2}$C.$\frac{3\sqrt{2}}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知二次函數(shù)f(x)的最小值為1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在區(qū)間[2a,a+1]上不單調(diào),求a的取值范圍
(3)若x∈[t,t+2],試求y=f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.如圖程序,如果輸入n是429,則該程序輸出的是942.

查看答案和解析>>

同步練習冊答案