下列命題中,錯(cuò)誤的是( 。
A、在△ABC中,A>B是sinA>sinB的充要條件
B、在銳角△ABC中,不等式sinA>cosB恒成立
C、在△ABC中,若acosA=bcosB,則△ABC必是等腰直角三角形
D、在△ABC中,若B=60°,b2=ac,則△ABC必是等邊三角形
考點(diǎn):命題的真假判斷與應(yīng)用
專題:簡(jiǎn)易邏輯
分析:A.在△ABC中,由正弦定理可得
a
sinA
=
b
sinB
,可得sinA>sinB?a>b?A>B,即可判斷出正誤;
B.在銳角△ABC中,由
π
2
A>
π
2
-B
>0,可得sinA>sin(
π
2
-B)
=cosB,即可判斷出正誤;
C.在△ABC中,由acosA=bcosB,利用正弦定理可得:sin2A=sin2B,得到2A=2B或2A=2π-2B即可判斷出正誤;
D.在△ABC中,利用余弦定理可得:b2=a2+c2-2accosB,代入已知可得a=c,又B=60°,即可得到△ABC的形狀,即可判斷出正誤.
解答: 解:A.在△ABC中,由正弦定理可得
a
sinA
=
b
sinB
,∴sinA>sinB?a>b?A>B,因此A>B是sinA>sinB的充要條件,正確;
B.在銳角△ABC中,A,B∈(0,
π
2
)
,∵A+B>
π
2
,∴
π
2
A>
π
2
-B
>0,∴sinA>sin(
π
2
-B)
=cosB,因此不等式sinA>cosB恒成立,正確;
C.在△ABC中,∵acosA=bcosB,利用正弦定理可得:sinAcosA=sinBcosB,∴sin2A=sin2B,∵A,B∈(0,π),∴2A=2B或2A=2π-2B,∴A=B或A+B=
π
2
,因此
△ABC是等腰三角形或直角三角形,因此是假命題;
D.在△ABC中,若B=60°,b2=ac,由余弦定理可得:b2=a2+c2-2accosB,∴ac=a2+c2-ac,即(a-c)2=0,解得a=c,又B=60°,
∴△ABC必是等邊三角形,正確.
綜上可得:C是假命題.
故選:C.
點(diǎn)評(píng):本題考查了正弦定理余弦定理解三角形、三角函數(shù)的單調(diào)性、誘導(dǎo)公式、簡(jiǎn)易邏輯的判定,考查了推理能力與計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)P為圓(x+1)2+y2=16上任意一點(diǎn),點(diǎn)C為圓心,線段PA的垂直平分線交PC于點(diǎn)B.
(1)求證:△ABC的周長(zhǎng)為定值;
(2)求點(diǎn)B的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求適合下列條件的雙曲線的標(biāo)準(zhǔn)方程.
(1)a=6,b=3;
(2)焦點(diǎn)為(0,-6),(0,6),且經(jīng)過(guò)點(diǎn)(2,-5);
(3)已知圓x2+y2-4x-9=0與y軸的兩個(gè)交點(diǎn)A,B都在雙曲線上,且A,B兩點(diǎn)恰好將此雙曲線兩焦點(diǎn)間線段三等分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a∈R,函數(shù)f(x)=x|x-a|,
(Ⅰ)當(dāng)a=2時(shí),寫(xiě)出函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)a>2時(shí),求函數(shù)y=f(x)在區(qū)間[1,2]上的最小值;
(Ⅲ)設(shè)a≠0,函數(shù)f(x)在(m,n)上既有最大值又有最小值,請(qǐng)分別求出m,n的取值范圍(用a表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若變量x、y滿足約束條件
x+2y≥5
x≤3
y≤4
,則z=x+y的取值范圍是( 。
A、[4,7]
B、[-1,7]
C、[
5
2
,7]
D、[1,7]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2sinxcosx+2
3
cos2x-
3

(1)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)在銳角三角形ABC中,若f(A)=1,bc=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,
(1)已知A=75°,B=45°,C=3
2
,求a,b.
(2)已知A=30°,B=120°,b=12,求a,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求與直線y=x+3平行且與圓(x-2)2+(y-3)2=8相切的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有5個(gè)座位連成一排,3人去就坐,每人坐一個(gè)座位,則恰有兩個(gè)空位相鄰的坐法數(shù)為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案