A. | {-1,0} | B. | {0,1} | C. | {0} | D. | {偶數(shù)} |
分析 先對函數(shù)g(x)進行化簡,根據(jù)[x]表示不超過x的最大整數(shù),針對x進行分類討論,發(fā)現(xiàn)規(guī)律,問題得以解決.
解答 解:由題意可知
g(x)=f(x)•f′(x)=$\left\{\begin{array}{l}{\frac{lnx}{x},x>0}\\{\frac{ln(-x)}{x},x<0}\end{array}\right.$,
不妨設(shè)x>0,則y=[g(x)]+[g(-x)]=[$\frac{lnx}{x}$]+[$\frac{lnx}{-x}$]
當(dāng)$\frac{lnx}{x}$∈(0,1),則$\frac{lnx}{-x}$∈(-1,0),[$\frac{lnx}{x}$]=0,[$\frac{lnx}{-x}$]=-1,y=[g(x)]+[g(-x)]=-1
當(dāng)$\frac{lnx}{x}$=0,則$\frac{lnx}{x}$=0,[$\frac{lnx}{x}$]=0,[$\frac{lnx}{-x}$]=0,y=[g(x)]+[g(-x)]=0
依此類推可得y=[g(x)]+[g(-x)]的值域是{-1,0},
故選A.
點評 本題主要考查了導(dǎo)數(shù)的運算以及求[x]這種函數(shù)的值域,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | 3 | D. | 1或3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>c>b | B. | b>c>a | C. | c>b>a | D. | c>a>b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com