14.已知關(guān)于x的方程x2+2bx+c=0(b,c∈R)在[-1,1]上有實(shí)數(shù)根,0≤4b+c≤3,則b的取值范圍是-1≤b≤2.

分析 設(shè)方程的根為x,則x2+2bx+c=0,求出c,代入0≤4b+c≤3,分離參數(shù)求最值,即可求出b的取值范圍.

解答 解:設(shè)方程的根為x,則x2+2bx+c=0,
∴c=-x2-2bx(x∈[-1,1]),
∵0≤4b+c≤3,
∴0≤4b-x2-2bx≤3(x∈[-1,1]),
∴$\frac{{x}^{2}}{2-x}$≤2b≤$\frac{{x}^{2}+3}{2-x}$,
設(shè)2-x=t(t∈[1,3]),則$\frac{4}{t}$+t-4≤2b≤$\frac{7}{t}$+t-4,
∵t∈[1,3],∴($\frac{4}{t}$+t)min=2,($\frac{7}{t}$+t)max=8,
∴-2≤2b≤4,
∴-1≤b≤2.
故答案為:-1≤b≤2.

點(diǎn)評(píng) 本題考查求參數(shù)的取值范圍,考查分離參數(shù)方法的運(yùn)用,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.[x]表示不超過x的最大整數(shù),若f′(x)是函數(shù)f(x)=ln|x|導(dǎo)函數(shù),設(shè)g(x)=f(x)f′(x),則函數(shù)f=[g(x)]+[g(-x)]的值域是(  )
A.{-1,0}B.{0,1}C.{0}D.{偶數(shù)}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.棱長(zhǎng)為2的正方體被截去一個(gè)角后所得幾何體的三視圖如圖所示,則該幾何體的體積為$\frac{22}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.幾何體的三視圖(單位:cm)如圖所示,則此幾何體各面中直角三角形有3個(gè),其幾何體的體積為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如圖是某幾何體的三視圖,其中正視圖是正方形,側(cè)視圖是矩形,俯視圖是半徑為2的半圓,則該幾何體的表面積等于16+12π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.為了研究某學(xué)科成績(jī)是否與學(xué)生性別有關(guān),采用分層抽樣的方法,從高三年級(jí)抽取了30名男生和20名女生的該學(xué)科成績(jī),得到如所示男生成績(jī)的頻率分布直方圖和女生成績(jī)的莖葉圖,規(guī)定80分以上為優(yōu)分(含80分).

(Ⅰ)(i)請(qǐng)根據(jù)圖示,將2×2列聯(lián)表補(bǔ)充完整;
優(yōu)分非優(yōu)分總計(jì)
男生
女生
總計(jì)50
(ii)據(jù)此列聯(lián)表判斷,能否在犯錯(cuò)誤概率不超過10%的前提下認(rèn)為“該學(xué)科成績(jī)與性別有關(guān)”?
(Ⅱ)將頻率視作概率,從高三年級(jí)該學(xué)科成績(jī)中任意抽取3名學(xué)生的成績(jī),求成績(jī)?yōu)閮?yōu)分人數(shù)X的期望和方差.
P(K2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.某幾何體的三視圖如圖,則該幾何體的表面積為( 。
A.16+$\frac{4}{3}$πB.38+4πC.40+πD.40+4π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.${({\frac{16}{81}})^{-\frac{1}{4}}}$+2lg4+lg$\frac{5}{8}$=$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù) f(x)的導(dǎo)數(shù)為 f'(x),且滿足關(guān)系式 f(x)=x3•$\int_0^2{xdx+{x^2}f'(1)+3x}$,則 f'(2)的值等于-9.

查看答案和解析>>

同步練習(xí)冊(cè)答案