【題目】已知數(shù)列{an}滿足an+1an=0(n∈N*),且,,成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)令bn=(n∈N*),求數(shù)列{bn}的前n項和為.
【答案】(1)an=2n;(2).
【解析】
(1)由遞推公式可知數(shù)列{an}是公比為2的等比數(shù)列,再由等差中項性質(zhì)構(gòu)建方程求得首項,最后帶入等比數(shù)列通項公式中即可;
(2)由(1)可表示數(shù)列{bn}的通項公式,進而利用裂項相消法求和即可.
(1)數(shù)列{an}滿足an+1an=0(n∈N*),可得數(shù)列{an}是公比為2的等比數(shù)列,
又知a2,a3+2,a4成等差數(shù)列,可得2(a3+2)=a2+a4,
即2(4a1+2)=2a1+8a1,解得a1=2,則an=2n.
(2)由(1)知an=2n,所以==
=
則.
科目:高中數(shù)學 來源: 題型:
【題目】點是拋物線:的焦點,動直線過點且與拋物線相交于,兩點.當直線變化時,的最小值為4.
(1)求拋物線的標準方程;
(2)過點,分別作拋物線的切線,,與相交于點,,與軸分別交于點,,求證:與的面積之比為定值(為坐標原點).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了豐富學生的課外文化生活,某中學積極探索開展課外文體活動的新途徑及新形式,取得了良好的效果.為了調(diào)查學生的學習積極性與參加文體活動是否有關(guān),學校對200名學生做了問卷調(diào)查,列聯(lián)表如下:
參加文體活動 | 不參加文體活動 | 合計 | |
學習積極性高 | 80 | ||
學習積極性不高 | 60 | ||
合計 | 200 |
已知在全部200人中隨機抽取1人,抽到學習積極性不高的學生的概率為.
(1)請將上面的列聯(lián)表補充完整;
(2)是否有99.9%的把握認為學習積極性高與參加文體活動有關(guān)?請說明你的理由;
(3)若從不參加文體活動的同學中按照分層抽樣的方法選取5人,再從所選出的5人中隨機選取2人,求至少有1人學習積極性不高的概率.
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,其中.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】自出生之日起,人的情緒、體力、智力等心理、生理狀況就呈周期變化,變化由線為.根據(jù)心理學家的統(tǒng)計,人體節(jié)律分為體力節(jié)律、情緒節(jié)律和智力節(jié)律三種.這些節(jié)律的時間周期分別為23天、28天、33天.每個節(jié)律周期又分為高潮期、臨界日和低潮期三個階段.以上三個節(jié)律周期的半數(shù)為臨界日,這就是說11.5天、14天、16.5天分別為體力節(jié)律、情緒節(jié)律和智力節(jié)律的臨界日.臨界日的前半期為高潮期,后半期為低潮期.生日前一天是起始位置(平衡位置),已知小英的生日是2003年3月20日(每年按365天計算).
(1)請寫出小英的體力、情緒和智力節(jié)律曲線的函數(shù);
(2)試判斷小英在2019年4月22日三種節(jié)律各處于什么階段,當日小英是否適合參加某項體育競技比賽?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,分別為橢圓的左、右焦點,點在橢圓上,且軸,的周長為6.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)過點的直線與橢圓交于,兩點,設為坐標原點,是否存在常數(shù),使得恒成立?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種工業(yè)機器生產(chǎn)商,對一次性購買2臺機器的客戶,推出兩種超過質(zhì)保期后兩年內(nèi)的延保維修優(yōu)惠方案:
方案一:交納延保金700元,在延保的兩年內(nèi)可免費維修2次,超過2次每次收取維修費200元;
方案二:交納延保金1000元,在延保的兩年內(nèi)可免費維修4次,超過4次每次收取維修費100元.
某工廠準備一次性購買2臺這種機器.現(xiàn)需決策在購買機器時應購買哪種延保方案,為此搜集并整理了50臺這種機器超過質(zhì)保期后延保兩年內(nèi)維修的次數(shù),得下表:
維修次數(shù) | 0 | 1 | 2 | 3 |
臺數(shù) | 5 | 20 | 10 | 15 |
以這50臺機器維修次數(shù)的頻率代替1臺機器維修次數(shù)發(fā)生的概率.記X表示這2臺機器超過質(zhì)保期后延保的兩年內(nèi)共需維修的次數(shù).
(1)求X的分布列;
(2)以所需延保金及維修費用的期望值為決策依據(jù),工廠選擇哪種延保方案更合算?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,等邊三角形的中線與中位線相交于,已知是繞旋轉(zhuǎn)過程中的一個圖形,下列命題中,錯誤的是
A. 恒有⊥
B. 異面直線與不可能垂直
C. 恒有平面⊥平面
D. 動點在平面上的射影在線段上
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知一個正多邊形的每條邊和對角線恰各染成2018種顏色之一,且所有邊及對角線不全同色.若正多邊形中不存在兩色三角形(即三角形的三邊恰被染成兩種顏色),則稱該多邊形的染色是“和諧的”.求最大的正整數(shù) ,使得存在一個和諧的染色正邊形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com