5.已知tanα=3,則$\frac{2sinα-cosα}{sinα+3cosα}$等于(  )
A.$\frac{1}{3}$B.$\frac{5}{6}$C.$\frac{3}{2}$D.2

分析 由已知利用同角三角函數(shù)基本關(guān)系式化弦為切,即可計(jì)算得解.

解答 解:∵tanα=3,
∴$\frac{2sinα-cosα}{sinα+3cosα}$=$\frac{2tanα-1}{tanα+3}$=$\frac{2×3-1}{3+3}$=$\frac{5}{6}$.
故選:B.

點(diǎn)評(píng) 本題主要考查了同角三角函數(shù)基本關(guān)系式在三角函數(shù)化簡(jiǎn)求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.命題“對(duì)任意x∈R,都有x2≥0”的否定為存在x0∈R,使得x${\;}_{0}^{2}$<0.存在x0∈R,使得x${\;}_{0}^{2}$<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)[x]表示不超過(guò)x的最大整數(shù)(如$[2]=2,[{\frac{5}{4}}]=1$),對(duì)于函數(shù)f(x)=$\frac{{{{2015}^x}}}{{1+{{2015}^x}}}$,函數(shù)$g(x)=[{f(x)-\frac{1}{2}}]+[{f(-x)-\frac{1}{2}}]$的值域是(  )
A.{-1,0}B.{-1,1}C.{0,1}D.{-1,0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知參數(shù)方程$\left\{\begin{array}{l}{x=at+lcosq}\\{y=bt+lsinq}\end{array}\right.$(a、b、l均不為零,0≤q≤2p),若分別取①t為參數(shù),②l為參數(shù),③q為參數(shù),則下列結(jié)論中成立的是(  )
A.①、②、③均直線B.只有②是直線C.①、②是直線,③是圓D.②是直線,①、③是圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.設(shè)a,b∈R,函數(shù)f(x)=ex-alnx-a,其中e是自然對(duì)數(shù)的底數(shù),曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為(e-1)x-y+b=0.
(1)求實(shí)數(shù)a,b的值;
(2)求證:函數(shù)y=f(x)存在極小值;
(3)若?x∈[$\frac{1}{2}$,+∞),使得不等式$\frac{e^x}{x}$-lnx-$\frac{m}{x}$≤0成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.執(zhí)行如圖所示的程序框圖,則輸出n的值是( 。
A.5B.15C.23D.31

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)$f(x)=1+\frac{1}{x}+lnx+\frac{lnx}{x}$,試判斷函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.下列說(shuō)法中正確的有③
①向一個(gè)圓面內(nèi)隨機(jī)地投一個(gè)點(diǎn),如果該點(diǎn)落在圓內(nèi)任意一點(diǎn)都是等可能的,則該隨機(jī)試驗(yàn)的數(shù)學(xué)模型是古典概型.
②拋擲兩枚硬幣,出現(xiàn)“兩枚都是正面朝上”、“兩枚都是反面朝上”、“恰好一枚硬幣正面朝上”的概率一樣大
③用樣本的頻率分布估計(jì)總體分布的過(guò)程中,樣本容量越大,估計(jì)越準(zhǔn)確.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.某人射擊一次擊中目標(biāo)概率為$\frac{3}{5}$,經(jīng)過(guò)3次射擊,記X表示擊中目標(biāo)的次數(shù),則方差D(X)=(  )
A.$\frac{18}{25}$B.$\frac{6}{25}$C.$\frac{3}{5}$D.$\frac{9}{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案