16.從0,1,2,3,4中選取三個(gè)不同的數(shù)字組成一個(gè)三位數(shù),其中奇數(shù)有(  )
A.18個(gè)B.27個(gè)C.36個(gè)D.60個(gè)

分析 先從1,3中選一個(gè)為個(gè)位數(shù)字,再剩下的3個(gè)(不包含0)取1個(gè)為百位,再?gòu)氖O?個(gè)(包含0)取一個(gè)為十位,根據(jù)分步計(jì)數(shù)原理可得.

解答 解:先從1,3中選一個(gè)為個(gè)位數(shù)字,再剩下的3個(gè)(不包含0)取1個(gè)為百位,再?gòu)氖O?個(gè)(包含0)取一個(gè)為十位,故有2×3×3=18個(gè),
故答案為:18.

點(diǎn)評(píng) 本題考查了分步計(jì)數(shù)原理,關(guān)鍵是分步,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知數(shù)列{an}滿(mǎn)足a1=1,an+1=2an-3(n∈N*),則數(shù)列{an}的通項(xiàng)公式為an=3-2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.x、y∈R,i是虛數(shù)單位,若(x+y-3)+(x-4)i=0,則y=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知在平面坐標(biāo)系內(nèi),O為坐標(biāo)原點(diǎn),向量$\overrightarrow{OA}$=(1,7),$\overrightarrow{OB}$=(5,1),$\overrightarrow{OP}$=(2,1),點(diǎn)M為直線(xiàn)OP上的一個(gè)動(dòng)點(diǎn).
(I)當(dāng)$\overrightarrow{MA}$•$\overrightarrow{MB}$取最小值時(shí),求向量$\overrightarrow{OM}$的坐標(biāo);
(II)在點(diǎn)M滿(mǎn)足(I)的條件下,求∠AMB的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.在[-2,4]上隨機(jī)的抽取一個(gè)實(shí)數(shù)m,則關(guān)于x的方程x2-$\sqrt{m}$x+$\frac{3}{4}$=0有實(shí)根的概率為$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=-x3+ax2+1,(a∈R).
(1)若f(x)圖象上橫坐標(biāo)為1的點(diǎn)處存在垂直于y軸的切線(xiàn),求a的值;
(2)若f(x)在區(qū)間(-1,2)內(nèi)有兩個(gè)不同的極值點(diǎn),求a取值范圍;
(3)當(dāng)a=1時(shí),是否存在實(shí)數(shù)m,使得函數(shù)g(x)=x4-5x3+(2-m)x2+1的圖象于函數(shù)f(x)的圖象恰有三個(gè)不同的交點(diǎn),若存在,試求出實(shí)數(shù)m的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=ex-x.
(1)求函數(shù)f(x)的極值;
(2)設(shè)函數(shù)g(x)=(m-1)x+n,若對(duì)?x∈R,f(x)恒不小于g(x),求m+n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知集合M={y|y=cosx,x∈R},N={x∈Z|$\frac{x-2}{1+x}$≤0},則M∩N為( 。
A.B.{0,1}C.{-1,1}D.(-1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=lnx-$\frac{1}{2}$ax+a-2,a∈R.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)g(x)=xf(x)+2,求證:當(dāng)a<ln$\frac{2}{e}$時(shí),g(x)>2a.

查看答案和解析>>

同步練習(xí)冊(cè)答案