1.設(shè)x∈[0,3],執(zhí)行如圖所示的程序框圖,從輸出的結(jié)果中隨機取一個數(shù)a,“2a-10≥0”的概率為( 。
A.$\frac{2}{3}$B.$\frac{5}{6}$C.$\frac{5}{7}$D.$\frac{4}{7}$

分析 先分析程序的功能為計算并輸出分段函數(shù)y=$\left\{\begin{array}{l}x+3,x<2\\{x}^{2}+1,x≥2\end{array}\right.$的值,進而求出函數(shù)的值域,再由幾何概型概率計算公式,得到答案.

解答 解:由已知可得該程序的功能是計算并輸出分段函數(shù)y=$\left\{\begin{array}{l}x+3,x<2\\{x}^{2}+1,x≥2\end{array}\right.$的值,
當x∈[0,2)時,y∈[3,5),
當x∈[2,3]時,y∈[5,10],
故輸出的結(jié)果的范圍為[3,10],
若從輸出的結(jié)果中隨機取一個數(shù)a,“2a-10≥0”?a∈[5,10],
則P=$\frac{10-5}{10-3}$=$\frac{5}{7}$,
故選:C

點評 本題考查的知識點是程序框圖,分段函數(shù)的值域,幾何概型,難度中檔.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=4sinxcos(x+$\frac{π}{6}$)+1.
(1)求f(x)的最小正周期;
(2)在△ABC中,角A,B,C的對邊分別為a,b,c,若f(A)=2,a=3,S△ABC=$\sqrt{3}$,求b2+c2的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.若存在實數(shù)t,對任意實數(shù)x∈[0,a],均有(sinx-t)(cosx-t)≤0,則實數(shù)a的最大值是$\frac{3π}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.有關(guān)以下命題:
①用相關(guān)指數(shù)R2來刻畫回歸效果,R2越小,說明模型的擬合效果越好;
②已知隨機變量ξ服從正態(tài)分布N(2,σ2),P(ξ≤4)=0.79,則P(ξ≤-2)=0.21;
③采用系統(tǒng)抽樣法從某班按學號抽取5名同學參加活動,學號為5,16,27,38,49的同學均被選出,則該班學生人數(shù)可能為60;
其中正確的命題的個數(shù)為(  )
A.3個B.2個C.1個D.0個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知正數(shù)a,b滿足2ab+b2=b+1,則a+5b的最小值為$\frac{7}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.定義集合A?B={x|x∈A或x∈B且x∉A∩B},設(shè)全集U={1,2,3,4,5,6,7,8,9},集合A={3,4,5,6},B={5,6,7,8,},則(∁UA)?B=(  )
A.{7,8}B.{1,2,5,6,9}C.{1,2,5,6}D.{3,4,7,8}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.設(shè)實數(shù)x,y滿足不等式$\left\{\begin{array}{l}{x+y-11≤0}\\{3x-y+3≤0}\\{y≥0}\\{\;}\end{array}\right.$,則z=3x+y的最大值為( 。
A.-3B.11C.15D.不存在

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.求曲線xy=1在點P(x0,y0)處的切線與兩坐標軸圍成的三角形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知函數(shù)f(x)=x2-2tx+2在[0,1]的最小值為g(t),則g(t)的表達式為g(t)=$\left\{\begin{array}{l}{2,}&{t≤0}\\{-{t}^{2}+2,}&{0<t<1}\\{-2t+3,}&{t≥1}\end{array}\right.$.

查看答案和解析>>

同步練習冊答案