數(shù)列{an}滿足an-an+1=an•an+1(n∈N+),數(shù)列{bn}滿足bn=
1
an
,且b1+b2+…+b9=90,則b4•b5的最大值是
 
考點:數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:由已知得
1
an+1
-
1
an
=1,從而數(shù)列{bn}是公差為1的等差數(shù)列,由b1+b2+…+b9=90,得b1=6,從而b4+b5=(4+5)+(5+5)=19,由此利用基本不等式能求出b4•b5的最大值.
解答: 解:∵an-an+1=an•an+1(n∈N+),
1
an+1
-
1
an
=1,
∵數(shù)列{bn}滿足bn=
1
an
,
∴數(shù)列{bn}是公差為1的等差數(shù)列,
∵b1+b2+…+b9=90,
9b1+
9×8
2
×1=90
,解得b1=6,
∴bn=6+(n-1)×1=n+5,
∴b4+b5=(4+5)+(5+5)=19,又bn>0,
∴b4•b5≤(
b4+b5
2
2=(
19
2
2=
361
4

故答案為:
361
4
點評:本題考查數(shù)列中兩項積的最大值的求法,是中檔題,解題時要注意等差數(shù)列的性質(zhì)和基本不等式的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知sinα=
5
13
,且α=(
π
2
,π),求cos2α,sin2α及sin
α
2
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,若c2=(a-b)2+6,∠C=
π
3
,求S△ABC

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在復平面內(nèi)復數(shù)z=1-2i所對應點的坐標為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

觀察下列式子:1+
1
22
3
2
,1+
1
22
+
1
32
5
3
,1+
1
2 
+
1
32
+
1
42
7
4
,…根據(jù)以上式子可以猜想:1+
1
22
+
1
32
+
1
42
+…+
1
20152
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x)是定義域為R的偶函數(shù).當x≥0時,f(x)=
5
4
sin(
π
2
x)(0≤x≤1)
(
1
4
)x+1(x>1)
,若關于x的方程5[f(x)]2-(5a+6)f(x)+6a=0(a∈R),有且僅有6個不同實數(shù)根,則實數(shù)a的取值范圍是( 。
A、0<a<1或a=
5
4
B、0≤a≤1或a=
5
4
C、0<a≤1或a=
5
4
D、1<a≤
5
4
或a=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

把正整數(shù)排列陳如圖甲的三角形數(shù)陣,然后擦去第偶數(shù)行中的奇數(shù)和第奇數(shù)行中的偶數(shù),得到如圖乙的三角形數(shù)陣,再把圖乙中的數(shù)按從小到大的順序排出一列,得到數(shù)列{an}.

(1)a32=
 
;
(2)若an=2080,則n
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

第117屆中國進出口商品交易會(簡稱2015年春季交廣會)將于2015年4月15日在廣州市舉行,為了搞好接待工作,組委會在廣州某大學分別招募8名男志愿者和12名女志愿者,現(xiàn)將這20名志愿者的身高組成如莖葉圖(單位:m),若身高在175cm以上(包括175cm)定義為“高個子”,身高在175cm以下(不包括175cm)定義為“非高個子”.
(1)計算男志愿者的平均身高(保留一位小數(shù));
(2)如果用分層抽樣的方法從“高個子”和“非高個子”中抽取5人,再從這5個人選2人,求至少有1人是“高個子”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合P={x|2012≤x≤2013},Q={x|a-1≤x≤a},若P⊆Q,實數(shù)a的取值集合為
 

查看答案和解析>>

同步練習冊答案