【題目】已知是數(shù)列的前項(xiàng)和,并且,對(duì)任意正整數(shù), ,設(shè)().
(1)證明:數(shù)列是等比數(shù)列,并求的通項(xiàng)公式;
(2)設(shè),求證:數(shù)列不可能為等比數(shù)列.
【答案】(1)答案見(jiàn)解析;(2)證明見(jiàn)解析.
【解析】試題分析:(1)利用an+1=Sn+1-Sn可知證明an+1=4(an-an-1),通過(guò)bn=an+1-2an可知bn+1=2(an+1-2an),通過(guò)作商可知{bn}是公比為2的等比數(shù)列,通過(guò)a1=1可知b1=3,進(jìn)而可得結(jié)論;
(2)假設(shè)為等比數(shù)列,則有, n≥2, 則有,故假設(shè)不成立,則數(shù)列不可能為等比數(shù)列 .
試題解析:(I)∵Sn+1=4an+2,∴Sn=4an-1+2(n≥2),
兩式相減:an+1=4an-4an-1(n≥2),∴an+1=4(an-an-1)(n≥2),
∴bn=an+1-2an,
∴bn+1=an+2-2an+1=4(an+1-an)-2an+1,bn+1=2(an+1-2an)=2bn(n∈N*),
∴,∴{bn}是以2為公比的等比數(shù)列,
∵b1=a2-2a1,而a1+a2=4a1+2,∴a2=3a1+2=5,b1=5-2=3,
∴bn=32n-1(n∈N*)
(II),假設(shè)為等比數(shù)列,則有
, n≥2, 則有=0
與 ≥1矛盾,所以假設(shè)不成立,則原結(jié)論成立,即
數(shù)列不可能為等比數(shù)列
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一條光線經(jīng)過(guò)P(2,3)點(diǎn),射在直線l:x+y+1=0上,反射后穿過(guò)點(diǎn)Q(1,1).
(1)求入射光線的方程;
(2)求這條光線從P到Q的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知具有相關(guān)關(guān)系的兩個(gè)變量之間的幾組數(shù)據(jù)如下表所示:
(1)請(qǐng)根據(jù)上表數(shù)據(jù)在網(wǎng)格紙中繪制散點(diǎn)圖;
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程,并估計(jì)當(dāng)時(shí), 的值;
(3)將表格中的數(shù)據(jù)看作五個(gè)點(diǎn)的坐標(biāo),則從這五個(gè)點(diǎn)中隨機(jī)抽取2個(gè)點(diǎn),求這兩個(gè)點(diǎn)都在直線的右下方的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:三棱錐中,側(cè)面垂直底面, 是底面最長(zhǎng)的邊;圖1是三棱錐的三視圖,其中的側(cè)視圖和俯視圖均為直角三角形;圖2是用斜二測(cè)畫(huà)法畫(huà)出的三棱錐的直觀圖的一部分,其中點(diǎn)在平面內(nèi).
(Ⅰ)請(qǐng)?jiān)趫D2中將三棱錐的直觀圖補(bǔ)充完整,并指出三棱錐的哪些面是直角三角形;
(Ⅱ)設(shè)二面角的大小為,求的值;
(Ⅲ)求點(diǎn)到面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,且過(guò)點(diǎn)
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線與圓相切于點(diǎn),且與橢圓只有一個(gè)公共點(diǎn).
①求證: ;
②當(dāng)為何值時(shí), 取得最大值?并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知與曲線相切的直線,與軸, 軸交于兩點(diǎn), 為原點(diǎn), , ,( ).
(1)求證:: 與相切的條件是: .
(2)求線段中點(diǎn)的軌跡方程;
(3)求三角形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,直三棱柱中, , , 為棱的中點(diǎn).
(Ⅰ)探究直線與平面的位置關(guān)系,并說(shuō)明理由;
(Ⅱ)若,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),且函數(shù)y=(1-x)f′(x)的圖像如圖所示,則下列結(jié)論中一定成立的是( )
A. 函數(shù)f(x)有極大值f(2)和極小值f(1) B. 函數(shù)f(x)有極大值f(-2)和極小值f(1)
C. 函數(shù)f(x)有極大值f(2)和極小值f(-2) D. 函數(shù)f(x)有極大值f(-2)和極小值f(2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為研究患肺癌與是否吸煙有關(guān),某腫瘤機(jī)構(gòu)隨機(jī)抽取了40人做相關(guān)調(diào)查,其中不吸煙人數(shù)與吸煙人數(shù)相同,已知吸煙人數(shù)中,患肺癌與不患肺癌的比為;不吸煙的人數(shù)中,患肺癌與不患肺癌的比為.
(1)現(xiàn)從患肺癌的人中用分層抽樣的方法抽取5人,再?gòu)倪@5人中隨機(jī)抽取2人進(jìn)行調(diào)查,求這兩人都是吸煙患肺癌的概率;
(2)是否有99.9%的把握認(rèn)為患肺癌與吸煙有關(guān)?
附: ,其中.
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com