7.已知正三棱柱底面邊長是2,外接球的表面積是16π,則該三棱柱的側(cè)棱長( 。
A.$\frac{{2\sqrt{6}}}{3}$B.$\frac{{4\sqrt{6}}}{3}$C.$\sqrt{6}$D.$\frac{{2\sqrt{3}}}{3}$

分析 設(shè)該三棱柱的側(cè)棱長為x,外接球的半徑為r,可得16π=4πr2,${r}^{2}=(\frac{x}{2})^{2}$+$(\frac{2}{3}×\frac{\sqrt{3}}{2}×2)^{2}$,解出即可得出.

解答 解:設(shè)該三棱柱的側(cè)棱長為x,外接球的半徑為r,
則16π=4πr2,${r}^{2}=(\frac{x}{2})^{2}$+$(\frac{2}{3}×\frac{\sqrt{3}}{2}×2)^{2}$,
解得r=2,x=$\frac{4\sqrt{6}}{3}$.
故選:B.

點評 本題考查了正三棱柱的性質(zhì)、外接球的性質(zhì)、勾股定理、正三角形的性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}(2-a)x-12,x≤7\\{(a+2)^{x-6}},x>7\end{array}$是R上的增函數(shù)
(1)求實數(shù)a的取值范圍;
(2)若g(x)=-$\frac{1}{3}{x^3}+\frac{1}{2}{x^2}$+2x,當x∈[1,4]時,試比較$f(g(x)),f(\frac{10}{3}),f(-\frac{16}{3})$的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.(1)已知$C_{15}^{3x-2}=C_{15}^{x+1}$,求$C_{10}^x+C_{10}^{x-1}$的值;
(2)若${(\root{3}{x}-\frac{1}{x})^n}(n∈N)$的展開式中第3項為常數(shù)項,求n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖是某幾何體的三視圖,其中正視圖是腰長為4的等腰三角形,側(cè)視圖是半徑為2的半圓,則該幾何體的表面積是(  )
A.$4π+4\sqrt{3}$B.$8π+4\sqrt{3}$C.$4π+8\sqrt{3}$D.$8π+8\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在△ABC中,下列命題錯誤的是(  )
A.∠A>∠B的充要條件是sinA>sinB
B.∠A>∠B的充要條件是cosA<cosB
C.∠A>∠B的充要條件是tanA>tanB
D.∠A>∠B的充要條件是$\frac{cosA}{sinA}<\frac{cosB}{sinB}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知點P、A、B都在圓 x2+y2=r2上,其中點P的坐標是(1,1),直線PA,PB的斜率分別是k1,k2,且k1•k2=1.
(1)證明:△PAB是等腰三角形;
(2)證明:直線AB的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.極坐標方程5ρ2cos2θ+ρ2-24=0所表示的曲線的焦距為$2\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖所示,在四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,點E在線段PC上,PC⊥平面BDE.
(Ⅰ)證明:BD⊥平面PAC;
(Ⅱ)(理科生做)若PA=1,AD=2,求二面角B-PC-A的正切值;
(Ⅲ)(文科生做)若PA=1,AD=2,求幾何體E-BCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知一條光線從點(-2,-3)射出,經(jīng)y軸反射后與圓x2+y2+6x-4y+12=0相切,求反射光線所在直線的斜率.

查看答案和解析>>

同步練習(xí)冊答案