3.設(shè)a>0且a≠1,如果函數(shù)y=a2x+2ax-1在[-1,1]上的最大值為7,求a的值.

分析 由已知中函數(shù)y=a2x+2ax-1(a>0,且a≠1)在區(qū)間[-1,1]上的最大值是7,我們利用換元法,及二次函數(shù)的性質(zhì),我們易構(gòu)造關(guān)于a的方程,解方程即可得到答案.

解答 解:(1)a>1時(shí),令ax=t,x∈[-1,1],則$t∈[\frac{1}{a},a]$,
f(t)=t2+2t-1=(t+1)2-2在$[\frac{1}{a},a]$上單調(diào)遞增,
∴$f(t)_{max}=f(a)={a}^{2}+2a-1=7$即a2+2a-8=0,解得a=-4(舍去)或a=2.
(2)0<a<1時(shí),令ax=t,x∈[-1,1],則$t∈[a,\frac{1}{a}]$,
f(t)=t2+2t-1=(t+1)2-2在$[a,\frac{1}{a}]$上單調(diào)遞增,
∴$f(t)_{max}=f(\frac{1}{a})=\frac{1}{{a}^{2}}+\frac{2}{a}-1=7$.
解得$a=-\frac{1}{4}$(舍去)或$a=\frac{1}{2}$.
綜上:a=2或$a=\frac{1}{2}$.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)的最值及其幾何意義,指數(shù)函數(shù)的值域,二次函數(shù)的單調(diào)性,其中利用換元法將已知中的函數(shù)化為二次函數(shù)是解答本題的關(guān)鍵,體現(xiàn)了分類(lèi)討論的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2017屆湖南永州市高三高考一?荚嚁(shù)學(xué)(文)試卷(解析版) 題型:選擇題

已知實(shí)數(shù),滿(mǎn)足約束條件,則的最大值為( )

A.0 B. C.4 D.-10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,且滿(mǎn)足f(0)=f($\frac{π}{3}$)則下列說(shuō)法正確的是( 。
A.f(x)的最小正周期為2πB.f(x)在[0,$\frac{π}{4}$]上是增函數(shù)
C.f(x)的圖象關(guān)于直線(xiàn)x=$\frac{5}{6}$π對(duì)稱(chēng)D.f($\frac{2π}{3}$)=-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若不等式mx2+2mx-4<2x2+4x對(duì)任意實(shí)數(shù)x均成立,則實(shí)數(shù)m的取值范圍是( 。
A.(-∞,-2)∪[2,+∞)B.(-2,2)C.(-2,2]D.(-∞,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.函數(shù)y=f(x)是R上的偶函數(shù),且在(-∞,0]上是增函數(shù),若f(a)≤f(2),則實(shí)數(shù)a的取值范圍是( 。
A.a≤2B.a≥-2C.a≤-2或 a≥2D.-2≤a≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.在三角形ABC中,acos(π-A)+bsin(${\frac{π}{2}$+B)=0,則三角形的形狀為等腰三角形或直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.下列說(shuō)法正確的是( 。
A.若一個(gè)平面內(nèi)有三個(gè)點(diǎn)到另一個(gè)平面的距離都相等,則這兩個(gè)平面平行
B.若一條直線(xiàn)與一個(gè)平面內(nèi)兩條直線(xiàn)都垂直,那么這條直線(xiàn)垂直于這個(gè)平面
C.若兩個(gè)平面都垂直于第三個(gè)平面,則這兩個(gè)平面平行
D.若一條直線(xiàn)與兩個(gè)相交平面都平行,則這條直線(xiàn)與這兩個(gè)平面的交線(xiàn)平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)α∈{-3,-2,-1,-$\frac{1}{2}$,$\frac{1}{2}$,1,2,3},則使y=xα為奇函數(shù)且在(0,+∞)上單調(diào)遞減的α值的個(gè)數(shù)為 ( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(x,1),若$\overrightarrow{a}$⊥$\overrightarrow$,則x=-2.

查看答案和解析>>

同步練習(xí)冊(cè)答案