5.邊長(zhǎng)為4的菱形ABCD中,滿足∠DCB=60°,點(diǎn)E,F(xiàn)分別是邊CD和CB的中點(diǎn),AC交BD于點(diǎn)H,AC交EF于點(diǎn)O,沿EF將△CEF翻折到△PEF的位置,使平面PEF⊥平面ABD,連接PA,PB,PD,得到如圖所示的五棱錐P-ABFED.
(Ⅰ) 求證:BD⊥PA;
(Ⅱ) 求二面角B-AP-O的正切值.

分析 (Ⅰ)根據(jù)面面垂直的性質(zhì)定理即可證明BD⊥PA;
(Ⅱ) 建立空間坐標(biāo)系,求出平面的法向量,利用向量法即可求二面角B-AP-O的正切值.

解答 證明:(1)因?yàn)槠矫鍼EF⊥平面ABD,平面PEF∩平面ABD=EF,PO?PEF,
∴PO⊥ABD
則PO⊥BD,又AO⊥BD,AO∩PO=O,AO?APO,PO?APO,
∴BD⊥平面APO,
∵AP?APO,∴BD⊥PA….(6分)
(2)以O(shè)為原點(diǎn),OA為x軸,OF為y軸,OP為z軸,建立坐標(biāo)系
則$O(0,0,0),A(3\sqrt{3},0,0),P(0,0,\sqrt{3}),B(\sqrt{3},2,0)$,…(8分)
設(shè)$\vec n=(x,y,z)為平面OAP的一個(gè)法向量$,
則$\vec n=(0,1,0)$,$\vec m=(x,y,z)為平面ABP的一個(gè)法向量$,
$\overrightarrow{AB}$=(-2$\sqrt{3}$,2,0),$\overrightarrow{AP}$=(-3$\sqrt{3}$,0,$\sqrt{3}$),
則$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{AB}=0}\\{\overrightarrow{m}•\overrightarrow{AP}=0}\end{array}\right.$,得$\left\{\begin{array}{l}{-2\sqrt{3}x+2y=0}\\{-3\sqrt{3}x+\sqrt{3}z=0}\end{array}\right.$,
令x=1,則y=$\sqrt{3}$,z=3,
則$\vec m=(1,\sqrt{3},3)$….(10分)
$cosθ=\frac{\vec m•\vec n}{{|{\vec m}||{\vec n}|}}=\frac{{\sqrt{3}}}{{\sqrt{13}}}$,
∴$tanθ=\frac{{\sqrt{30}}}{3}$…..(12分)

點(diǎn)評(píng) 本題主要考查線直線垂直的判定以及二面角的應(yīng)用,建立坐標(biāo)性,求出平面的法向量,利用向量法是解決本題的關(guān)鍵.綜合性較強(qiáng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知數(shù)列{an}的前n項(xiàng)為Sn,且a1=$\frac{1}{2}$,an+1=$\frac{n+1}{2n}$an,則數(shù)列{an}的前14項(xiàng)和等于$\frac{2047}{1024}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.以下有關(guān)命題的說(shuō)法錯(cuò)誤的是(  )
A.命題“若x2-3x+2=0,則 x=1”的逆否命題為“若x≠1,則 x2-3x+2≠0
B.“x=1”是“x2-3x+2=0”的充分不必要條件
C.若 p∧q為假命題,則p,q均為假命題
D.對(duì)于命題 p:?x∈R使得x2+x+1<0,則¬p:?x∈R,均有x2+x+1≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(2a-1)x+a(x<2)}\\{lo{g}_{a}(x-1)(x≥2)}\end{array}\right.$是R上的減函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A.[$\frac{1}{3}$,$\frac{1}{2}$)B.[$\frac{2}{5}$,$\frac{1}{2}$)C.[$\frac{2}{5}$,1)D.(0,$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.平面α與平面β平行的條件可以是( 。
A.α內(nèi)有無(wú)數(shù)條直線都與β平行
B.直線a?α,直線b?β,且a∥β,b∥α
C.α內(nèi)的任何直線都與β平行
D.直線a∥α,a∥β,且直線a不在α內(nèi),也不在β內(nèi)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖所示的幾何體中,EA⊥平面ABC,BD⊥平面ABC,AC=BC=BD=2AE=$\frac{{\sqrt{2}}}{2}AB$,M是AB的中點(diǎn).
(1)求證:CM⊥EM;
(2)求MC與平面EAC所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知命題P:x2+x+4≥mx對(duì)一切的x<0恒成立,命題q:關(guān)于x的一元二次方程x2+(m-3)x+m+5=0的實(shí)數(shù)根均是正數(shù),若“p∨q”為真,“p∧q”為假,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知數(shù)列{an}和{bn}滿足:a1=2,$n{a_{n+1}}=(n+1){a_n}+n(n+1),n∈{N^*}$,且對(duì)一切n∈N*,均有${b_1}{b_2}…{b_n}={(\sqrt{2})^{a_n}}$.
(1)求證:數(shù)列$\{\frac{a_n}{n}\}$為等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和Sn;
(3)設(shè)${c_n}=\frac{{{a_n}-{b_n}}}{{{a_n}{b_n}}}(n∈{N^*})$,記數(shù)列{cn}的前n項(xiàng)和為Tn,求正整數(shù)k,使得對(duì)任意n∈N*,均有Tk≥Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知{an}的通項(xiàng)公式為an=(-1)n•n+2n,n∈N+,則前2n項(xiàng)和S2n=n+22n+1-2.

查看答案和解析>>

同步練習(xí)冊(cè)答案