A. | [$\frac{1}{3}$,$\frac{1}{2}$) | B. | [$\frac{2}{5}$,$\frac{1}{2}$) | C. | [$\frac{2}{5}$,1) | D. | (0,$\frac{1}{2}$) |
分析 由分段函數的性質結合一次函數和對數函數的單調性,列出不等式組,由此能求出實數a的取值范圍.
解答 解:∵函數f(x)=$\left\{\begin{array}{l}{(2a-1)x+a(x<2)}\\{lo{g}_{a}(x-1)(x≥2)}\end{array}\right.$是R上的減函數,
∴$\left\{\begin{array}{l}{2a-1<0}\\{0<a<1}\\{lo{g}_{a}(2-1)≤2(2a-1)+a}\end{array}\right.$,
解得$\frac{2}{5}≤a<\frac{1}{2}$.
∴實數a的取值范圍是[$\frac{2}{5}$,$\frac{1}{2}$).
故選:B.
點評 本題考查滿足條件的實數的取值范圍的求法,是中檔題,解題時要認真審題,注意分段函數的性質的合理運用.
科目:高中數學 來源: 題型:選擇題
A. | 若m⊥n,n?α,則m⊥α | B. | 若m∥α,n∥α,則m∥n | C. | 若m⊥α,m⊥n,則n∥α | D. | m⊥α,m∥n,則n⊥α |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1或11 | B. | 1 | C. | 11 | D. | 13 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{{4}^{n}-1}{3}$ | B. | $\frac{({2}^{n}-1)^{2}}{3}$ | C. | 4n-1 | D. | (2n-1)2 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com